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Maŕıa Eugenia Cornejo-Piñero, Juan Carlos Dı́az-Moreno

Janusz Kacprzyk, Valent́ın Liñeiro-Barea
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Janusz Kacprzyk Polish Academy of Sciences, Warsaw, Poland
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E. Rodŕıguez-Lorenzo, P. Cordero, M. Enciso, and A. Mora

A new functional measure of skewness based on the convex
transform order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
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Preface

Mathematics is an indispensable field for a lot of areas such as Engineering, Com-
puter Science, Physics, Chemistry and Business, in which improves the current
methodologies and solves new challenges.

An important branch in Computer Science is Computational Intelligence,
whose aim is to provide methods to deal with complex real-world problems for
which traditional approaches are not feasible. Some of the methods that Com-
putational Intelligence encompasses are, among others, fuzzy logic, evolutionary
computation, neural networks, as well as probabilistic and statistical approaches,
such as Bayesian networks or kernel methods.

In the past few years Computational Intelligence has become one of the main
research topics at the Széchenyi István University. The first six Györ Symposia
on Computational Intelligence have been successfully organized from 2008 to
2014. The seventh Györ Symposium on Computational Intelligence is jointly held
with the fourth International Workshop on Mathematics and Soft Computing
and it is called the 7th European Symposium on Computational Intelligence
and Mathematics (ESCIM 2015). The location has been changed but preserves
the philosophy of the past Györ Symposia enriching from a more mathematical
perspective. That is, bringing together scientists and engineers working in the
field of computational intelligence and mathematics to solve current challenges
in these fundamental areas.

ESCIM 2015 will be held in Cádiz from October 7th to 10th, 2015, and it is
organized by members of the University of Cádiz, Spain.

This symposium proceedings volume contains the contributions presented
during ESCIM 2015, which have been included in different sections:

– Decision-Making under Uncertainty and Data Mining
– Evolutionary Computation, Metaheuristics and Machine Learning
– Software Verification and Validation
– Computational Optimization
– Computational Intelligence
– Mathematics and Soft Computing
– Formal Concept Analysis
– Graded Algebras and Algebras Admitting Multiplicative Bases
– Generalized Convexity and Fuzzy or Interval Valued Applications

We would like to thank the plenary speakers for their outstanding contribu-
tions to research and leadership in their respective fields. There were six plenary
lectures covering the different areas of the symposium in charge of prestigious re-
searches such as László Kóczy, Manuel Ojeda-Aciego, David Pearce, Jozef Pocs,
Sandra Sandri and Nagy Szilvia.

We would also like to thank all the participants for their contributions to
the symposium program and all the authors for their submitted papers. We are



X

also indebted to the special session organizers and our colleagues members of the
Program Committee, since the successful organization of this symposium would
not have been possible without their work. Finally, we acknowledge the support
received from the Department of Mathematics of the University of Cádiz, the
Széchenyi István University (Györ) and the Hungarian Fuzzy Association.

October 2015 Jesús Medina
Conference Chair

ESCIM 2015



Keynote Speakers

László T. Kóczy

1. Department of Information Technology, Széchenyi István University, Györ,
Hungary

2. Department of Telecommunications and Media Informatics, Budapest
University of Technology and Economics, Budapest, Hungary

Title: Classification and recognition of movement sequences
Abstract: Signal processing and classification as a sub problem of signal

processing are well researched areas, but new methods and concepts are pre-
sented still today. Handwritten characters are satisfying the definition of signal,
if we consider it as a chronologically ordered list of two dimensional coordi-
nate pairs. The recognition of such handwritten characters could be solved with
methods known from signal processing and classification. This work outlines
hand-printed (non cursive) character recognition from a signal processing as-
pect starting with the introduction of various types of handwritten gestures
and characters, then a short overview of issues and challenges (e.g. input qual-
ity, segmentation, pre-processing etc) of handwriting recognition with common
solutions. It is followed by a brief summary of concepts of some uni- and multi-
stroke character recognizers to present some examples found in literature. After
that a single- and multi-stroke recognizer family (so called Fuzzy-Based Recog-
nizer or FUBAR) is shown in details based on the Ph.D. dissertation of Alex
Tormasi with a high emphasis on the basic concept of the recognition method,
the construction of initial fuzzy rule bases with statistical and metaheuristic
(bacterial evolutionary algorithm, big bang-big crunch, imperial competitive al-
gorithm, particle swarm optimization) methods. Finally the properties of the
metaheuristic methods based on the experiences from the research of FUBAR
are also summarized.

Manuel Ojeda-Aciego

Department of Applied Mathematics, University of Málaga. Spain

Title: Adjoints and non-canonical reasoning
Abstract: Computational intelligence must necessarily deal with reasoning

mechanisms with are outside the realm of classical logic. Several logical ap-
proaches have been developed to reproduce different aspects of non-canonical
reasoning. In this talk, we will argue on the usefulness of mathematical tools,
in particular the use of adjoints, to formalize some approaches to reason under
imprecision, uncertainty, and lack of information.
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Sandra Sandri

Brazilian National Institute for Space Research (INPE), São José dos Campos,
SP, Brazil

Title: Current Trends on Computational Intelligence for Space Research in
Brazil

Abstract: The main driver of innovation in Space Research in Brazil is
INPE, the Brazilian National Institute for Space Research. It is focused in areas
such as meteorology and climate change, atmospheric science, space science and
space engineering. It also provides services such as weather and climate moni-
toring, satellite tracking and control, and measuring the amount of forest fires,
deforestation, lightnings and air pollution occurring in Brazil. This talk is di-
vided into two parts; first, I will briefly present INPE, followed by some of its
Computational Intelligence applications under development. These applications
include the use of Neuro-Fuzzy Systems for the prediction of regime change in
chaotic systems (related to meteorological phenomena), and the use of evolu-
tionary techniques, such as Genetic Algorithms and Particle Swarms, to learn
parameters for radar imagery filters.

Jozef Pócs

Palacky University Olomouc. Czech Republic

Title: Fuzzy concept analysis with preference relations
Abstract: Formal Concept Analysis and its various fuzzy (many-valued)

modifications represent methods of data analysis for identifying conceptual struc-
tures among data sets. A preference relation, either on objects or attributes, can
be seen as an additional information, which should be included to a creation
process of a concept lattice. From an algebraic point of view, we discuss some
possibilities to include preferences into fuzzy concept lattices. The main empha-
sis will be on the so-called one-sided concept lattices.

David Pearce

Universidad Politécnica de Madrid, Spain

Title: On Logics for Trust and Honesty
Abstract: In this talk I present two extensions of the well-known modal

logics of trust from (Liau, 2003) formed by adding further axioms. The idea is to
interconnect the trust modality with the individual belief modalities of agents.
In the first of our logics we capture the idea that if an agent i trusts an agent j
with respect to a statement p then i believes that j does not disbelieve p; while in
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the second logic if i trusts j concerning p, then i believes that j believes p. In this
way we can explicate a type of trust that is linked to honesty or sincerity. These
quite intuitive extensions of the logic of trust help to solve some unintuitive
consequences that arise when the semantics of trust and belief are independent.
As a technical result we establish the soundness and completeness of these logics
with respect to semantics based on neighourhood frames.

Nagy Szilvia

Faculty of Engineering Sciences. Univ. Széchenyi István, Hungary

Title: Wavelets and their possibilities in computational intelligence
Abstract: Wavelet transform is ideal for image and data processing in many

ways. It is easy to calculate wavelet transforms by rather simple convolutional
filters. Wavelets are organized in resolution levels, and the wavelet transformed
values correspond to spatial (temporal) positions - the higher the resolution level,
the denser the grid of these positions. It is easy to find edges, patterns, average
behavior and fine-scale behavior in a function or image with wavelets. In many
inference systems, the way of processing of data is the key, and wavelets are very
good candidates for this purpose.

By omitting wavelet coefficients near zero, the compression of data is also
possible. Selecting these non-important coefficients might be done by evolution-
ary algorithms.

Wavelets are also suitable for solving differential equations. It is usual to solve
a problem at various resolutions, however, local refinements are also possible,
moreover, prediction of the next finer resolution level coefficients is a recent
advancement, where computational intelligence can have significant role.
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New research on the probabilistic p-center
problem

Maria Albareda-Sambola1, Luisa I. Martnez-Merino2, and Antonio M.
Rodŕıguez-Ch́ıa2

1 Universitat Politècnica de Catalunya. BarcelonaTech, Barcelona, Spain,
maria.albareda@upc.edu

2 Departamento de Estad́ıstica e Investigación Operativa, Universidad de Cádiz,
Spain,

luisa.martinez@uca.es, antonio.rodriguezchia@uca.es

Abstract. This work deals with the p-center problem, where the aim
is to minimize the maximum distance between any user and his center
taking into account that the demand occurs in any site with a specific
probability. The problem is of interest for the location of emergency
centers. We consider different formulations for the problem and exten-
sive computational tests are reported, showing the potentials and limits
of each formulation on several types of instances. Finally, some improve-
ments on these formulations have been developed obtaining in some cases
much better resolution times.

Keywords: Location theory, p-center problem, uncertainty.

1 Introduction

Facility location models have been extensively studied in the literature. Different
kinds of facilities have been modeled, such as routers or servers in communication
network, warehouses or distribution centers in a supply chain, hubs or tranship-
ment nodes in passenger transport, and hospital or emergency facilities in a
public service system, among others. In general, the goal of these types of prob-
lems is to locate the facilities among a set of candidate sites and assign customers
to the facilities optimizing some effectivity measure that usually depends of the
distances between the facilities and the customers, see for instance [1, 2] and the
references therein.

The p-center problem (pCP) is a well-known discrete optimization location
problem which consists of locating p centers out of n sites and assigning (allo-
cating) the remaining n− p sites to the centers so as to minimize the maximum
distance (cost) between a site and the corresponding center, see [3, 4]. The un-
certainties can be generally classified into three categories: provider-side uncer-
tainty, receiver-side uncertainty, and in-between uncertainty. In this paper we
focus on the receiver-side uncertainty.

L. Kóczy, J. Medina (Eds): ESCIM 2015. 978-84-608-2823-5 1



2 New research on the probabilistic p-center problem

2 The problem

Let N = {1, . . . , n} be the given set of sites or customers. Throughout the paper
we assume, without loss of generality, that the set of candidate sites for centers
is identical to N . Let p ≥ 2 be the number of centers to be located. For each pair
(i, j), i, j ∈ N , let dij be the distance (cost, travel time) from i to j. We assume
dii = 0 ∀i ∈ N and dij > 0 ∀i, j ∈ N : i 6= j. We do not assume other special
properties like satisfaction of triangle inequality, that is to say, strictly speaking
d is not necessarily a distance. But we need to do an additional assumption to
deal with the case of ties among several distances from the same site. If this is the
case, in order to break ties we suppose that there are preferences on the centers
in such a way that sites undoubtedly will choose one of the centers before the
others. In practice, ties can be broken by slightly perturbing the tied distances.
Summarizing, we will also assume dia 6= dib ∀i, a, b ∈ N : a 6= b. Associated
with each customer i ∈ N is the probability of having demand 0 ≤ qi < 1. The
events of demand occurrence are assumed to be independent.

To describe a solution to the PpCP we will need to identify the set of p sites
where facilities are open, and the assignment to one of those facilities of each of
the potential customers, since at the moment of making the decision we do not
know which customers will place a demand and which will not. In what follows,
we will distinguish between the assignment cost of a customer and its service
cost. The assignment cost corresponds to the distance between the customer and
the facility it is assigned to a priori, whilst the service cost takes this same value
but only in the demand scenarios where the customer does have demand.

In case of tie between a client and several plants, this will be assigned to the
plant with the largest index. In case of ties between two clients and their plants
we consider the largest distance the one assigned to the client with the greatest
index.

Lemma 1. For any set of probabilities (q1, . . . , qn) with 0 6 qi 6 1, i ∈ N , any
feasible solution of the PpCP can be associated with a π vector satisfying:

1. |{j ∈ N : πij 6= 0}| = 1 ∀i ∈ N
2. If d(1) 6 d(2) 6 · · · 6 d(n) is a non-decreasing sequence of distances between

each customer and the open facility it is assigned to, and (1), . . . , (n) is the
corresponding sequence of customers,

n∑

j=1

π(i)j = q(i)

n∏

t=i+1

(1− q(t)).

3.
n∑

i=1

n∑

j=1

πij = 1−
n∏

i=1

(1− qi) 6 1, (1)

that allows to compute the expected maximum service cost as

n∑

i=1

n∑

j=1

πijdij .

2
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Theorem 1. The optimal value of the objective function above is achieved in a
solution where every site is covered by its closest plant.

Corollary 1. The closest assignment constraints can be used as valid inequali-
ties for any formulation of the considered problem even if they are not needed to
formulate it.

Suppose that we want to minimize the expected maximum service cost, taking
into account only the K 6 p largest allocated distances. This problem is called K
probabiliestic p-center problem. In this case, closest assignment constraints must
be added to formulation. Otherwise we can’t assure that the sites are assigned
to their closest located facility. In the following section we develop different
formulations for PpCP and K-PpCP.

3 A first Formulation. Four-index Formulation

In this section we present a first formulation of PpCP that uses two families of
binary variables and a group of continuous variables. For i, j ∈ N , we define
binary variables

yj =

{
1, if a plant is opened at site j,
0, otherwise.

and continuous variables
πij= probability that dij is the largest service distance.

Note that in case of distance ties πij variables are defined in the sense of
Lemma 1. Finally, for all i, j, k, ` ∈ N such that dij > dk` or if dij = dk` for all
i > k, we also define the binary variables

xijk` =





1, if i is allocated to j, k to ` and dij is the first
candidate service distance larger than dk`;

(dij > dk`),
0, otherwise.

3



4 New research on the probabilistic p-center problem

(F1) min
n∑

i=1

n∑

j=1

πijdij

s.t.
n∑

j=1

yj = p, (2)

n∑

k=1

n∑

`=1

xijk` 6 yj ,∀i, j ∈ N (3)

n∑

k=1

n∑

l=1

xk`ij 6 yj ,∀i, j ∈ N (4)

n∑

j=1

n∑

k=1

n∑

`=1

xijk` 6 1,∀i ∈ N (5)

n∑

j=1

n∑

k=1

n∑

`=1

xk`ij 6 1,∀i ∈ N (6)

n∑

i=1

n∑

j=1

n∑

k=1

n∑

`=1

xijk` = n− 1, (7)

n∑

k=1

n∑

`=1

n∑

j′=1

j′ 6=j

xij′k` +

n∑

k=1

n∑

`=1

xk`ij 6 1,∀i, j ∈ N (8)

πk` >
1− qi
qi

qkπij − 1 + xijk`,∀i, j, k, ` ∈ N (9)

πij > qi

(
n∑

k=1

n∑

`=1

xijk` −
n∑

k=1

n∑

`=1

xk`ij

)
∀i, j ∈ N (10)

yj , xijk` ∈ {0, 1},∀i, j, k, ` ∈ N (11)

πij ∈ [0, 1],∀i, j ∈ N. (12)

Constraint (2) ensures that p facilities are opened, and constraints (3) and (4)
force that all assignments of customers are made to open facilities. The sorting of
the used service distances is made through constraints (5)-(8), taking advantage
of the variable definition (recall that xijk` is not defined, or is fixed to zero, if
dij � dk`). In particular, constraints (5) and (6) ensure that the distance to cover
site i is at most once inmediately greater/smaller than another distance from a
site and its plant. Constraints (8) together with (5) and (6) ensure that any site
i is cover by at most one plant. Constraints (9)-(10) are used to guarantee that
π and x variables take consistent values. Finally, the last sets of constraints set
the domains of the variables.

4



New research on the probabilistic p-center problem 5

As shown in Corolary 1, Closest Assignment Constraints (CAC) are valid. In
this work, we have adapted the CAC set presented in [5]:

n∑

k=1

n∑

`=1

n∑

a=1;dia>dij

xiak` + yj 6 1, ∀i, j ∈ N, (13)

n∑

i=1

n∑

j=1

n∑

a=1;dka>dk`

xijka + y` 6 1, ∀k, ` ∈ N. (14)

4 Four index formulation with K largest distances

We add variables:

zkl =





1, if k is allocated to l and the distance dkl is
among the n−K smallest distances,

0, otherwise.

Taking only into account K largest distance, we obtain the following formulation,

(F1K) min

n∑

i=1

n∑

j=1

πijdij

s.t. constraints (2)-(7),(10)-(14),

πk` >
1− qi
qi

qkπij − 1 + xijk` − zk`,∀i, j, k, ` ∈ N, (15)

n∑

i=1

n∑

j=1

n∑

k′=1,`′=1

dk′`′>dk`

xijk′`′ ≥ Kzk`, ∀k, ` ∈ N. (16)

zk` ∈ {0, 1}, ∀k, ` ∈ N. (17)

Constraints (16) are used to guarantee that the z variables take consistent values.
In addition, (16) is similar to (9) where term −zkl has been include to distinguish
wether the distance dkl is among K−largest distances.

5 Variable neighborhood search for PpCP

Variable Neighborhood search is a metaheuristic to solve combinatorial problems
proposed by [6] for the p-median problem. It is a very well-known technique
often used to solve discrete facility location problems and it usually provides
high quality solutions. Since p-median problem is a particular case of DOMP,
[7] adapted VNS for solving the DOMP. We will adopt this heuristic to solve
PpCP.

The basic idea of VNS is to implement a systematic interchange of neigh-
borhoods within a local search algorithm. The algorithm remains in the same
solution until a better solution is found and then, the solution moves there.

5



6 New research on the probabilistic p-center problem

In order to test the quality of VNS we considered a group of random generated
examples with different combinations of n, p and K. To compare the solutions
given by VNS with the optimal ones, the solutions of F1K have been used. The
gap between the optimal solution and that one obtained by VNS is computed
according to:

gap = 100 · zV NS − zopt
zopt

,

where zV NS is the solution obtained by VNS and zopt the optimal objective
function. We also compare running times of VNS heuristic and four index for-
mulation with K largest distances. VNS method and four index formulation were
implemented using Mosel programming language and compiled by Xpress 7.7.
Instances were run on a Intel(R) Core(TM) i7-4790K CPU 32 GB RAM.

For each value of (n, p,K), five instances are created in the following way. We
generate n random points in the plane and we obtain their distances using l1-
norm. After that, demand probability of each customer is generated randomly.
Next table reports average gap, VNS running time and F1K running time of
each group of instances. As we can see, VNS heuristic provides good results in
very small times.

n p K Gap VNS-time F1K-time n p K Gap VNS-time F1K-time

6 2 2 0.00 0.00 0.88 15 10 4 0.00 0.03 >7200
10 3 3 0.00 0.00 60.62 20 3 5 0.00 0.01 >7200
10 5 3 0.00 0.01 40.23 20 8 5 0.00 0.06 >7200
13 3 4 1.41 0.00 1678.14 20 10 5 0.00 0.07 >7200
13 5 4 0.00 0.01 1945.77 25 3 6 0.16 0.02 >7200
13 8 4 0.25 0.02 785.31 25 8 6 0.33 0.11 >7200
15 3 4 0.59 0.01 >7200 25 10 6 1.28 0.14 >7200
15 8 4 0.00 0.02 >7200

Comparisons between VNS and F1K results.
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Abstract. We review our results on Lie algebras with a set grading and apply
them to study Lie algebras admitting a multiplicative basis. We show that if g is
a Lie algebra admitting a multiplicative basis B then g decomposes as the direct
sum of well-described ideals. Under mild conditions, it is also shown that the
above decomposition is actually by means of the family of its minimal ideals.
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gebra, structure theory.

1 Introduction

The interest on group gradings on Lie algebras has been remarkable in the last years,
motivated in part by their application in physics, geometry and topology where they
appear as the natural framework for an algebraic model [1, 2, 7–10, 12–16]. However
gradings by means of an arbitrary set, not necessarily a group, have been considered
in the literature just in a slightly way. A complete review of the state of the art can be
found in the recent monograph [11].

In the paper [6] we study Lie algebras of arbitrary dimension and over an arbitrary
base field K graded by means of an arbitrary set I , by focussing on its structure. We
begin by reviewing the results in [6]. Finally we will apply these results to the study of
the structure of Lie algebras admitting a multiplicative basis.

2 Review on set graded Lie algebras

Definition 1. Let g be a Lie algebra and I an arbitrary (non-empty) set. It is said that
g has a set grading, by means of I , if g =

⊕
i∈I

gi where any gi is a linear subspace

satisfying that for any j ∈ I either [gi, gj ] = 0 or 0 6= [gi, gj ] ⊂ gk for some (unique)
k ∈ I .

We call the support of the grading to the set S := {i ∈ I : gi 6= 0}.
? Supported by the PCI of the UCA ‘Teorı́a de Lie y Teorı́a de Espacios de Banach’, by the
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L. Kóczy, J. Medina (Eds): ESCIM 2015. 978-84-608-2823-5 7



2 Lie algebras with a set grading II

The regularity conditions will be understood in graded sense, that is, a subalgebra a
of a Lie algebra with a set grading g is a linear subspace satisfying [a, a] ⊂ a and such
that splits as a =

⊕
i∈I

ai with any ai = a∩ gi. A subalgebra i of g is an ideal if [i, g] ⊂ i.

A Lie algebra with a set grading g will be called simple if its product is nonzero and its
only ideals are {0} and g.

Let g be an arbitrary set-graded Lie algebra with the set S as support of the grading.
For each i ∈ S, a new variable i /∈ S is introduced and we denote by S := {i : i ∈ S}
the set consisting of all these new symbols. We will also denote by P(A) the power set
of a given set A.

Next, we consider the following operation,
? : (S∪̇S)× (S∪̇S)→ P(S), given by

– For i, j ∈ S,

i ? j =

{
∅, if [gi, gj ] = 0;
{k}, if 0 6= [gi, gj ] ⊂ gk.

– For i ∈ S and j ∈ S,

i ? j = j ? i = {k ∈ S : 0 6= [gk, gj ] ⊂ gi}.

– For i, j ∈ S,
i ? j = ∅.

From now on, given any i ∈ S we will denote (i) := i. Given also any subset U of
S ∪S, we write by U := {i : i ∈ U} if U 6= ∅ and ∅ := ∅.

In this moment we have to note that sometimes it is interesting to distinguish one
element 0 in the support of the grading, because the homogeneous space g0 has, in a
sense, a special behavior to the remaining elements in the set of homogeneous spaces
gi,i ∈ S. From here, we are going to feel free in our study to distinguish one special
element 0 in the support of the grading. Hence, let us now fix an element 0 such that
either 0 ∈ S satisfying the property 0 ? i 6= {0} for any i ∈ S \ {0}, or 0 = ∅. Note
that the possibility 0 = ∅ holds for the case in which it is not wished to distinguish any
element in S.

Finally, we need to introduce the following mapping:

φ : P((S∪̇S) \ {o, o})× (S∪̇S)→ P((S∪̇S) \ {o, o}),

as

– φ(∅,S∪̇S) = ∅,
– For any ∅ 6= A ∈ P((S∪̇S) \ {o, o}) and a ∈ S∪̇S,

φ(A, a) = ((
⋃

x∈A
(x ? a)) \ {o}) ∪ ((

⋃

x∈A
(x ? a)) \ {o}).

8



Lie algebras with a set grading II 3

Note that for any A ∈ P((S∪̇S) \ {o, o}) and a ∈ S∪̇S we get that

φ(A, a) = φ(A, a) (1)

and
φ(A, a) ∩S = (

⋃

x∈A
(x ? a)) \ {o}.

Also observe that for any i ∈ S and a ∈ S∪̇S we have that i ∈ x ? a for some x ∈ S
if and only if x ∈ i ? a; while i ∈ k ? a for some k ∈ S if and only if k ∈ i ? a. These
facts together with Equation (1) imply that for any A ∈ P((S∪̇S) \ {o, o}) such that
A = A and a ∈ S∪̇S we have

i ∈ φ(A, a) ∩S if and only if

i ∈ S and either φ({i}, a) ∩ A ∩S 6= ∅ or φ({i}, a) ∩ A ∩S 6= ∅.

Definition 2. Let i and j be two elements in S \ {0}. We say that i is connected to j if
there exists a family

{a1, a2, ..., an−1, an} ⊂ S∪̇S

satisfying the following conditions:

If n = 1.

1. a1 = i = j.

If n ≥ 2.

1. a1 ∈ {i, i}.

2. φ({a1}, a2) 6= ∅,
φ(φ({a1}, a2), a3) 6= ∅,
φ(φ(φ({a1}, a2), a3), a4) 6= ∅,
· · · · · · · · ·
φ(φ(· · · (φ({a1}, a2), · · · ), an−2), an−1) 6= ∅.

3. j ∈ φ(φ(· · · (φ({a1}, a2), · · · ), an−1), an).

The family {a1, a2, ..., an−1, an} is called a connection from i to j.

The next result is of straightforward verification.

Proposition 1. The relation ∼ in S \ {0}, defined by i ∼ j if and only if i is connected
to j, is an equivalence relation.

9



4 Lie algebras with a set grading II

By the above Proposition we can consider the quotient set (S\{o})/ ∼= {[i] : i ∈
S \ {o}}, becoming [i] the set of elements in S \ {o} which are connected to i.

Our next goal in this section is to associate an ideal g[i] of g to any [i]. Fix i ∈
S\{o}, we start by defining the set g0,[i] ⊂ g0 as follows g0,[i] := (

∑
j,k∈[i]

[gj , gk])∩g0,

where g0 := {0} whence 0 = ∅.
Next, we define v[i] :=

⊕
j∈[i] gj . Finally, we denote by g[i] the direct sum of the

two subspaces above, that is, g[i] := g0,[i] ⊕ v[i].
We can verify the next result.

Proposition 2. For any i ∈ S \ {o}, the graded linear subspace g[i] is an ideal of g.

Corollary 1. If g is simple, then there exists a connection between any two elements of
S \ {0}.

Lemma 1. If [i] 6= [j] for some i, j ∈ S \ {0} then [g[i], g[j]] = 0.

Theorem 1. A set-graded Lie algebra g decomposes as g = u ⊕ (
∑

[i]∈(S\{0})/∼
g[i]),

where u is a linear complement of
∑

[i]∈(S\{0})/∼
g0,[i] in g0 and any g[i] is one of the

ideals given in Proposition 2. Furthermore [g[i], g[j]] = 0 whenever [i] 6= [j].

Proof. Since we can write g = g0 ⊕ (
⊕

i∈S\{0}
gi) and

g0 = u⊕ (
∑

[i]∈(S\{0})/∼
g0,[i]),

⊕

i∈S\{0}
gi =

⊕

[i]∈(S\{0})/∼
v[i]

we clearly have g = u ⊕ (
∑

[i]∈(S\{0})/∼
g[i]) being each g[i] an ideal of g satisfying

[g[i], g[j]] = 0 when [i] 6= [j] by Proposition 2 and Lemma 1.

In case it is not distinguished any element 0 in the support of the grading, that is
0 = ∅, we have as an immediate consequence of Theorem 1 the next result.

Corollary 2. If 0 = ∅, then g =
⊕

[i]∈S/∼
g[i], where any g[i] is one of the ideals given

in Proposition 2.

We recall that the center of g is the set C(g) = {x ∈ g : [x, g] = 0}, and that it is
said that g0 is tight whence g0 = {0} or g0 =

∑
i,j∈S\{0},i?j={0}

[gi, gj ].

Corollary 3. Suppose g is centerless and g0 is tight, then the set-graded Lie algebra g
decomposes as the direct sum of the ideals given in Proposition 2, g =

⊕
[i]∈(S\{0})/∼ g[i].

Now we ask ourselves if any of the components in the decompositions given in
Theorem 1, Corollary 2 and Corollary 3 is simple. Under mild conditions we give an
affirmative answer.
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Lie algebras with a set grading II 5

Definition 3. We say that g is of maximal length if dim gi = 1 for any i ∈ S \ {0}.

Definition 4. We say that g is S-multiplicative if given i, j ∈ S such that i ∈ j ? a for
some a ∈ S∪̇S then gi ⊂ [gj , ga + ga].

The proof of the next results can be found in [6, Section 3].

Theorem 2. Let g be a centerless S-multiplicative Lie algebra with a set grading of
maximal length and with g0 tight. Then g is simple if and only if it has all of the elements
in S \ {0} connected.

Theorem 3. Let g be a centerless S-multiplicative Lie algebra with a set grading of
maximal length and with g0 tight. Then g is the direct sum of the family of its minimal
ideals, each one being a simple Lie algebra with a set grading having all of the elements
different to 0 in its support connected.

3 Lie algebras admitting a multiplicative basis

Definition 5. A basis B = {ei}i∈I of a Lie algebra (g, [·, ·]) is said to be multiplicative
if for any i, j ∈ I we have either [ei, ej ] = 0 or 0 6= [ei, ej ] ∈ Fek for some (unique)
k ∈ I .

Remark 1. The definition of multiplicative basis given in Definition 5 is a little bit more
general than the usual one in the literature ([3, 4]). In fact, in these references, a basis
B = {ei}i∈I is called multiplicative if for any i, j ∈ I we have either [ei, ej ] = 0 or
0 6= [ei, ej ] = ek for some k ∈ I .

Definition 6. Let g be a Lie algebra with a multiplicative basis B. It is said that a sub-
algebra C of g admits a multiplicative basis BC inherited from B if BC is a multiplicative
basis of C satisfying BC ⊂ B.

Consider now a Lie algebra g with a multiplicative basis B = {ei}i∈I . Observe that
we can write

g =
⊕

i∈I
Kei

being the above decomposition a set grading of g by means of the set I . We would have
gi = Kei for any i ∈ I . From here, the results in Section 2 apply and we can assert the
following results.

Theorem 4. Let g be an arbitrary Lie algebra with a multiplicative basis. Then one
has

g =
⊕

[i]∈I/∼
g[i],

being any g[i] an ideal of g admitting a multiplicative basis inherited from the one of g
and satisfying [g[i], g[j]] = 0 whenever [i] 6= [j].

11



6 Lie algebras with a set grading II

Definition 7. We say that a Lie algebra g admits a ?-multiplicative basis B = {ei}i∈I
if it is multiplicative and given either i, j ∈ I such that j ∈ i ? a for some a ∈ I∪̇I or
j ∈ k ? i for some k ∈ I then ej ∈ [ei, g].

Examples of Lie algebras admitting ?-multiplicative bases are the semisimple finite-
dimensional Lie algebras over algebraically closed fields of characteristic 0, the semisim-
ple separable L∗-algebras, the semisimple locally finite split Lie algebras and the split
Lie algebras considered in [5, §3].

Definition 8. A Lie algebra g admitting a multiplicative basis B is called minimal if its
only nonzero ideal admitting a multiplicative basis inherited from B is g.

Theorem 5. Let g be a Lie algebra admitting a ?-multiplicative basis B = {ei}i∈I .
Then g =

⊕
k

Ik is the direct sum of the family of its minimal ideals, each one admitting

a ∗-multiplicative basis inherited from B.
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13. Havlı́ček, M., Patera, J. and Pelantová, E.: On Lie gradings II. Linear Algebra Appl. 277

(1998), 97–125.
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Abstract. We review some of our results on split regular Hom-Poisson algebras
obtained in [2]. Later we introduce the class of strongly split regular Hom-Poisson
algebras and apply the previous results on split regular Hom-Poisson algebras to
prove that a Lie-centerless arbitrary strongly split regular Hom-Poisson algebra
P is the direct sum of the family of its split-simple split-ideals.

Keywords: Hom-associative algebra, Hom-Lie algebra, Poisson algebra, root,
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1 Review on split regular Hom-Poisson algebras

Definition 1. A Hom-Lie algebra P is a vector space over a base fieldK endowed with
a bilinear product {·, ·} : P×P −→ P and with a linear map φ : P −→ P such that

1. {x, y} = −{y, x},
2. {{x, y}, φ(z)}+ {{y, z}, φ(x)}+ {{z, x}, φ(y)} = 0, (Hom-Jacobi identity),

for any x, y, z ∈ P.

Definition 2. A Hom-Poisson algebra is a Hom-Lie algebra (P, {·, ·}, φ), endowed
with a Hom-associative product, that is, a bilinear product denoted by yuxtaposition
such that

(xy)φ(z) = φ(x)(yz)

for any x, y, z ∈ P, and such that the following Hom-Leibniz identity

{xy, φ(z)} = {x, z}φ(y) + φ(x){y, z}

holds for any x, y, z ∈ P.
When φ furthermore is a Poisson automorphism, that is a linear bijection such that

φ({x, y}) = {φ(x), φ(y)} and φ(xy) = φ(x)φ(y) for any x, y ∈ P, it is said that P is
a regular Hom-Poisson algebra.

? Supported by the PCI of the UCA ‘Teorı́a de Lie y Teorı́a de Espacios de Banach’, by the
PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio
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L. Kóczy, J. Medina (Eds): ESCIM 2015. 978-84-608-2823-5 13



2 On strongly split regular Hom-Poisson algebras

A subalgebra A of P is a linear subspace such that {A,A}+AA ⊂ A and φ(A) =
A. A linear subspace I of P is called an ideal if {I,P}+ IP+PI ⊂ I and φ(I) = I .
We refer to [3] for a first approach to Hom-Poisson algebras.

In the paper [2] we introduce the class of split Hom-Poisson algebras P formed
for those Hom-Poisson algebras satisfying that their underlying Hom-Lie algebras are
split. So we recall that given a Hom-Lie algebra (P, {·, ·}, φ) and by denoting by H a
maximal abelian subalgebra of P. For a linear functional

α : H −→ K,

we define the root space of P (respect to H) associated to α as the subspace

Pα = {vα ∈ P : {h, vα} = α(h)φ(vα) for any h ∈ H}.

The elements α : H −→ K satisfying Pα 6= 0 are called roots of P with respect to H
and we denote Λ := {α ∈ (H)∗ \ {0} : Pα 6= 0}. It is said that P is a split Hom-Lie
algebra, with respect to H , if

P = H ⊕ (
⊕

α∈Λ
Pα).

It is also said that Λ is the roots system of P.
For an easier notation, the mappings φ|H , φ|−1H : H → H will be denoted by φ and

φ−1 respectively.
We recall some properties of split regular Hom-Lie algebras that can be found in [1,

Lemma 1.3, Lemma 1.4].

Lemma 1. Let (P, {·, ·}, φ) be a split regular Hom-Lie algebra. Then for any α, β ∈
Λ ∪ {0} the following assertions hold.

1. φ(Pα) ⊂ Pαφ−1 and φ−1(Pα) ⊂ Pαφ.
2. {Pα,Pβ} ⊂ Pαφ−1+βφ−1 .
3. If α ∈ Λ then αφ−z ∈ Λ for any z ∈ Z.
4. P0 = H .

Definition 3. A split Hom-Poisson algebra is a Hom-Poisson algebra in which the
Hom-Lie algebra (P, {·, ·}) is split respect to a MASA H of (P, {·, ·}).

From Hom-Leibniz identity we get.

Lemma 2. Let P be a split regular Hom-Poisson algebra. Then for any α, β ∈ Λ∪{0}
we have that PαPβ ⊂ Pαφ−1+βφ−1 .

Throughout this paper we will denote by N the set of all non-negative integers and
by Z the set of all integers. Finally, we would like to note that our split regular Hom-
Poisson algebras are considered of arbitrary dimension and over an arbitrary base field
K.
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On strongly split regular Hom-Poisson algebras 3

In the following, P denotes a split regular Hom-Poisson algebra and

P = H ⊕ (
⊕

α∈Λ
Pα)

the corresponding root spaces decomposition.
Given a linear functional α : H → K, we denote by −α : H → K the element in

H∗ defined by (−α)(h) := −α(h) for all h ∈ H . We also denote by

−Λ = {−α : α ∈ Λ}.

Definition 4. Let α and β be two elements in Λ. We will say that α is connected to β if
either β = εαφz for some z ∈ Z and ε ∈ {±1} or there exists {α1, α2, ..., αk} ⊂ ±Λ,
k ≥ 2 such that:

1. α1 ∈ {αφ−n : n ∈ N}.
2. α1φ

−1 + α2φ
−1 ∈ ±Λ,

α1φ
−2 + α2φ

−2 + α3φ
−1 ∈ ±Λ,

α1φ
−3 + α2φ

−3 + α3φ
−2 + α4φ

−1 ∈ ±Λ,
· · · · · · · · ·
α1φ

−i + α2φ
−i + α3φ

−i+1 + · · ·+ αi+1φ
−1 ∈ ±Λ,

· · · · · · · · ·
α1φ

−k+2 + α2φ
−k+2 + α3φ

−k+3 + · · ·+ αiφ
−k+i + · · ·+ αk−1φ−1 ∈ ±Λ.

3. α1φ
−k+1 +α2φ

−k+1 +α3φ
−k+2 + · · ·+αiφ

−k+i−1 + · · ·+αkφ
−1 ∈ {±βφ−m :

m ∈ N}.

In this case, we will also say that {α1, ..., αk} is a connection from α to β.

The proof of the next result is analogous to the one of [1, Proposition 2.4].

Proposition 1. The relation ∼ in Λ, defined by α ∼ β if and only if α is connected to
β is of equivalence.

From Proposition 2 we can consider the quotient set Λ/ ∼= {[α] : α ∈ Λ},
becoming [α] the set of nonzero roots P which are connected to α. Fix [α] ∈ Λ/ ∼, we
define the linear space IH,[α] ⊂ H as follows

IH,[α] := spanK{{Pβ ,P−β}+ PβP−β : β ∈ [α]} ⊂ H.
Next, we define

V[α] :=
⊕

β∈[α]
Pβ .

Finally, we denote by I[α] the direct sum of the two subspaces above, that is,

I[α] := IH,[α] ⊕ V[α].

The reference [2, Section 2] allows us to assert the next results.

Theorem 1. The following assertions hold.
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1. For any [α] ∈ Λ/ ∼, the linear space I[α] = IH,[α] ⊕ V[α] of P associated to [α] is
an ideal of P.

2. If P is simple, then there exists a connection from α to β for any α, β ∈ Λ and
H =

∑
α∈Λ

({Pα,P−α}+ PαP−α).

Theorem 2. We have P = U +
∑

[α]∈Λ/∼
I[α], where U is a linear complement in H

of spanK{{Pα,P−α} + PαP−α : α ∈ Λ} and any I[α] is one of the ideals of P
described in Theorem 1-1, satisfying {I[α], I[β]}+ I[α]I[β] = 0 if [α] 6= [β].

2 Strongly split regular Hom-Poisson algebras

Definition 5. A split regular Hom-Poisson algebra P with set of nonzero roots Λ is
called a strongly split regular Hom-Poisson algebra ifH =

∑
α∈Λ

({Pα,P−α}+PαP−α)

and given α, β ∈ Λ such that αφ−1 + βφ−1 ∈ Λ then we have {Pα,Pβ}+ PαPβ =
Pαφ−1+βφ−1 .

Let us focuss for a while on the concept of split-ideal in the framework of split
Hom-Poisson algebras. An ideal I of a regular split Hom-Poisson algebra P is called
a split-ideal if I ∩H 6= 0. A regular split Hom-Poisson algebra P will be called split-
simple if {P,P},PP 6= 0 and it has no proper split-ideals. Finally, we recall that a
root system Λ is called symmetric if it satisfies that α ∈ Λ implies −α ∈ Λ. From now
on Λ will be supposed symmetric.

Consider then P a strongly split regular Hom-Poisson algebra and

P = H ⊕ (
⊕

α∈Λ
Pα)

the corresponding root spaces decomposition. Since P is in particular a split regular
Hom-Poisson algebra, all of the results developed in Section 2 hold. By Theorem 1-1
we know that for any [α] ∈ Λ/ ∼, the linear space P[α] is an ideal of P. Furthermore,
it is an split-ideal as consequence of the facts {H[γ], V[α]} = 0 for any [γ] 6= [α],
H =

∑
[β]∈Λ/∼

H[β] and α 6= 0. From here, we can also assert that any P[α], [α] ∈ Λ/ ∼,

is a strongly split-ideal admitting the split decomposition

P[α] = H[α] ⊕ (
⊕

β∈[α]
Pβ).

Proposition 2. If (P, {·, ·}) is centerless then any P[α] is split-simple.

Proof. Consider a split-ideal I of P[α]. Since I is also an ideal of the centerless split
regular Hom-Lie algebra (P[α], {·, ·}), [1, Lemma 4.3] gives us that we can write

I = (I ∩H[α])⊕ (
⊕

β∈[α]
(I ∩Pβ))
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with I∩H[α] 6= 0. For any 0 6= h ∈ I∩H[α], the fact (P[α], {·, ·}) is centerless gives us
that there exists β ∈ [α] such that {h,Pβ} 6= 0. From here we get {I∩H[α],Pβ} = Pβ

and so 0 6= Pβ ⊂ I . Since φ(I) = I we get as consequence that

Pβφz ⊂ I for any z ∈ Z.

Given now any δ ∈ [α] \ {±βφz : z ∈ Z}, the fact that β and δ are connected
allows us to take a connection {α1, α2, ..., αk} from β to δ. Since

α1, α2, α1φ
−1 + α2φ

−1 ∈ Λ

we have
{Pα1 ,Pα2}+ Pα1Pα2 = Pα1φ−1+α2φ−1 ⊂ I

as consequence of Pα1
= Pβ ⊂ I . In a similar way

{Pα1φ−1+α2φ−1 ,Pα3}+ Pα1φ−1+α2φ−1Pα3
= Pα1φ−2+α2φ−2+α3φ−1 ⊂ I

and we finally get by following this process that

Pα1φ−k+1+α2φ−k+1+α3φ−k+2+···+αiφ−k+i−1+···+αkφ−1 = Pεδφ−m ⊂ I

for some m ∈ N and ε ∈ ±1. From here we have, taking into account φ(I) = I ,
that Pεδ ⊂ I and conclude H[α] ⊂ I . Consequently, taking also into account that
{H[α],Pδ} = Pδφ−1 for any δ ∈ [α], we get V[α] ⊂ I . We have showed I = P[α] and
so P[α] is split-simple.

Theorem 3. Any strongly split regular Hom-Poisson algebra P such that (P, {·, ·}) is
centerless is the direct sum of split-ideals, each one being a split-simple strongly split
Hom-Poisson algebra.

Proof. Since we can write the disjoint unionΛ =
⋃

[α]∈Λ\∼
[α] we have P =

∑
[α]∈Λ\∼

P[α].

Let us now verify the direct character of the sum: given x ∈ P[α]∩
∑

[β] ∈ Λ/ ∼
β � α

P[β], since

we have {P[α],P[β]} = 0 for [α] 6= [β], we obtain

{
x,P[α]

}
+




x,

∑

[β] ∈ Λ/ ∼
β � α

P[β]





= 0.

From here {x,P} = 0 and so x = 0, as desired. Consequently we can write

P =
⊕

[α]∈Λ\∼
P[α].

Finally, Proposition 2 completes the proof.
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Abstract. The aim of this work is to generalize classical concepts of
generalized convexity and relationships between solutions of variational-
like inequalities and mathematical programming problems given in the
finite dimensional case, to a fuzzy and interval-valued context. Firstly,
in this work we have shown that invex fuzzy mappings are more useful
than differential convex fuzzy mapping for fuzzy optimization. Secondly,
we relate solutions of Stampacchia Interval Variational-Like Inequality
with the weak minimum of the Interval Continuous-Time Problem. Some
results proved are related to the search for equilibrium points in the
Walrasian equilibrium price model, in the Wardrop’s principle for traffic
equilibrium problem and in oligopolistic market equilibrium problem.

Keywords: Generalized convexity fuzzy mappings; Variational-like in-
equality; Fuzzy optimization; Interval continuous-time problems.

1 Introduction

The imprecision occurring in the optimization problems is categorized as the
fuzzy optimization problems or interval optimization problems.

In fuzzy context, the study of generalized convex fuzzy mapping and its con-
nection with fuzzy optimization has been studied by many authors. For instance,
in 1992, Nanda and Kar [3] proposed a concept of convex fuzzy mapping and
proved that a fuzzy mapping is convex if and only if its epigraph is a convex set.
In their book, [6], Ramik and Vlach gave several types of generalized convex sets
and generalized concave functions based on the support set of a fuzzy set. Syau
[10] introduced the concepts of pseudoconvexity, invexity and pseudoinvexity for
fuzzy mappings of one variable by using a notion of differentiability.

Recently, Wu and Xu [13] introduced the concepts of fuzzy pseudoconvex,
fuzzy invex, fuzzy pseudoinvex and fuzzy preinvex mappings from Rn to the
set of fuzzy intervals based on the concept of differentiability of fuzzy mapping
due to Wang and Wu [12]. More recently, using the derivative for fuzzy map-
ping due to Seikkala [9] (or Buckley and Feuring [2]), Panigrahi [4] introduced
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generalized convex fuzzy mappings such as quasiconvexity, strict quasiconvexity,
strong quasiconvexity and pseudoconvexity and he studied its connection with
fuzzy optimization. In addition, using the derivative for fuzzy mapping due to
Seikkala [9], Wu and Xu [14] introduced the concepts of invex and incave fuzzy
mappings.

In all the previous articles, restrictive concepts of differentiable fuzzy map-
pings were used. For instance, the concept of derivative for fuzzy mapping due to
Seikkala [9], similar to the Hukuhara-derivative introduced by Puri and Ralescu
[5], possesses the following property: the diameter of the support supp(F (t)) of
a differentiable fuzzy mapping F is nondecreasing as t increases. Consequently,
other concepts of derivative for fuzzy mappings more general than previous con-
cepts were well introduced. For instance, Bede and Gal [1] introduced the concept
of strongly generalized differentiable fuzzy mapping, and Stefanini and Bede [11]
introduced the concept of generalized Hukuhara derivative.

We show that a differentiable and convex fuzzy mapping F : K → E does
not necessarily verify the following inequality

F (x) < ∇̃F (y)(x− y) + F (y), (1)

for all x, y ∈ K. However, in some cases the inequality (1) is valid only when x−y
is replaced by an adequate η(x, y). Consequently, the introduction of invex fuzzy
mappings is still needed. Further, solutions of a fuzzy variational-like inequality
problem with solutions of fuzzy optimization problem are relating.

The interval-valued optimization problems may provide an alternative choice
for considering the uncertainty into the optimization problems.

The aim of this work is define the Continuous-Time Problem in an interval
context and obtain optimality conditions for this problem and find relations
between solutions of Interval Continuous-Time Problem and solutions of Interval
Variational-like Inequality Problems, such that the results of classic optimization
problem are particular cases that here we get.

2 The necessity of invexity in fuzzy context

Let E denote the family of fuzzy intervals, i.e, E denotes the family of compact
and convex fuzzy sets on R. Obviously, [µ]α is a nonempty compact and convex
subset of R (denoted [µ∗(α), µ∗(α)]) for any µ ∈ E and α ∈ [0, 1].

The fuzzy optimization problem consists of

(FOP)

{
min F (x)
s.t. x = (x1, ..., xn) ∈ K ⊆ Rn.

We recall that if there exists a δ-neighborhood Nδ(x
∗) around x∗ ∈ K, such

that for no x ( 6= x∗) ∈ K ∩Nδ(x∗), F (x) 4 F (x∗), then x∗ is called a strict local
optimal solution (SLOS).

The following definition of convexity for fuzzy mapping is well-known in the
literature, for instance see [3, 4, 6, 13, 14].
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Definition 1. A fuzzy mapping F : K → E is said to be convex on a convex set
K ⊂ Rn if for any x, y ∈ K, λ ∈ [0, 1],

F (λx+ (1− λ)y) 4 λF (x)+̃(1− λ)F (y).

Note that F is convex if and only if the endpoint functions F∗(·)(α), F ∗(·)(α)
are convex functions for all α ∈ [0, 1]. It’s to possible to find a differentiable con-
vex fuzzy mapping does not necessarily verify the following inequality F (x) <
F ′(y)(x− y)+̃F (y), for all x, y ∈ K, where F ′ is the strongly generalized differ-
ential given by Bede and Gal [1].

To solve this inconvenience other concepts of invex and incave fuzzy mappings
are given.

Definition 2. A G-differentiable fuzzy mapping F : K ⊂ Rn → E is called
fuzzy invex (FIX) with respect to a function η : K ×K → Rn, if for all x, y ∈ K

F (x) < F ′(y)η(x, y)+̃F (y).

Definition 3. A G-differentiable fuzzy mapping F : K ⊂ Rn → E is called
fuzzy incave (FIC) with respect to a function η : K×K → Rn, if for all x, y ∈ K

F (x) 4 F ′(y)η(x, y)+̃F (y).

Definition 4. A G-differentiable fuzzy mapping F : K ⊂ Rn → E is called
fuzzy strictly incave (FSIC) with respect to a function η : K ×K → Rn, if for
all x, y ∈ K

F (x) ≺ F ′(y)η(x, y)+̃F (y), ∀x 6= y.

3 Fuzzy variational-like inequalities

In this section, we can define the next problems:

Definition 5. Let K ⊂ R be an open convex set, x∗ ∈ K, and let F : K →
E be a G-differentiable fuzzy mapping. The Stampacchia fuzzy variational-like
inequality problem is to find x∗ ∈ K, such that there does not exist another
x ∈ K, so that

(SFV LIP ) F ′(x∗)η(x, x∗) 4 0

Definition 6. Let K ⊂ R be an open convex set, x∗ ∈ K, and let F : K → E
be a G-differentiable fuzzy mapping. The Minty fuzzy variational-like inequality
problem is to find x∗ ∈ K, such that there does not exist another x ∈ K, so that

(MFV LIP ) F ′(x)η(x, x∗) < 0

An example of fuzzy variational-like inequality problem is the fuzzy trans-
portation equilibrium problem with the next notation:

– G = (N,A) a network graph G in which A represents the set of arcs and N
the set node;
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– W the set of the origin-destination (O−D), |W | represents number of (O−
D);

– Rw the set of paths connecting O −D pair w ∈W
– R represents the set of all paths, |R| represents number of paths, r represents
r ∈ R;

– dw the demand of O −D pair w ∈W , d the demand vector W ;
– frw the flow of path r connecting O −D pair w, f the flow vector of paths;
– xa the flow of section a, x the flow vector of sections;
– c̃a the fuzzy travel costs of section a; c̃ the fuzzy travel cost vector;
– C̃wr the fuzzy travel cost of path r connecting O − D pair w; C̃ the fuzzy

travel cost vector of paths;
– λ̃∗w the minimum fuzzy travel cost of O −D pair;

δwar =

{
1, if path r ∈ R traverses arc a ∈ A,
0, otherwise.

Theorem 1 (The Wardrop first principle). For each pair of origin-destination,
the paths used have cost less than or equal to unused paths.

The mathematical formulation of previous principle are the fuzzy transporta-
tion equilibrium conditions:

C̃wr





= λ̃∗w, f
∗
w > 0;

∀r ∈ Rw, ∀w ∈W, where C̃w
∗

r =
∑
a∈A c̃

∗
aδ
w
ar

≥ λ̃∗w, f∗w = 0;

where f satisfies three conditions:

(a)
∑
r∈Rw

fwr = dw, ∀w ∈W
(b) fwr ≥ 0, r ∈ Rw
(c) xa =

∑
w∈W

∑
r∈Rw

fwr δ
w
ar, ∀a ∈ A

In a user-equilibrium network, no traveller can improve his/her travel cost
by unilaterally changing routes. The fuzzy user equilibrium model is equivalent
to obtain a solution of fuzzy variational inequality model: finding a vector f∗ ∈
Ωf = {f |fsatifies:(a)-(c)}, such that C̃(f∗)(f − f∗) ≤ 0, ∀f ∈ Ωf .

We will prove that:

Theorem 2. Let K ⊂ R be an open convex set, x∗ ∈ K, and let F : K → E be
a G-differentiable fuzzy invex mapping (FIX) with respect to η. If x∗ is a solution
of (SFV LIP ), then x∗ is a strict local optimal solution (SLOS) of (FOP).

Theorem 3. Let K ⊂ R be an open convex set, x∗ ∈ K, and let F : K → E be
a G-differentiable fuzzy incave mapping (FIC) with respect to η. If x∗ is a strict
local optimal solution (SLOS) of (FOP), then x∗ is a solution of (SFVLIP).

Theorem 4. Let K ⊂ R be an open convex set, x∗ ∈ K, and let F : K → E be
a G-differentiable fuzzy invex mapping (FIX) with respect to η. If x∗ is a strict
local optimal solution (SLOS) of (FOP), then x∗ is a solution of (MFVLIP).
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4 Interval variational-like inequalities

We denote by KC the family of all bounded closed intervals in R, i.e.,

KC = {[a, a] / a, a ∈ R and a ≤ a}
The Interval Continuous-Time Programming Problem (ICTP ) is defined as,

min φ(x) =
∫ T
0
F (x(t), t)dt =

[∫ T
0
f(x(t), t)dt,

∫ T
0
f(x(t), t)dt

]

s.t. x ∈ X
Here X is a nonempty convex subset of the Banach space Ln∞, φ : X → KC .

Let V be an open subset of Rn containing the set {x(t) ∈ Rn : x ∈ X, t ∈ [0, T ]}.
Let F : V × [0, T ] → KC . We assume that f, f , are real functions defined
on V × [0, T ] and this functions are assumed to be Lebesgue measurable and
integrable for all x ∈ X and continuously differentiable functions with respect
to their first argument.

Definition 7. Let φ be an interval-valued function defined on X. It is said that
x̄ ∈ X is a (local) weak minimum (WM) for (ICTP) if there does not exist x ∈ X
(∃δ > 0, x ∈ B(x0, δ) ∩X) such that φ(x) ≺ φ(x̄).

The variational inequality problem has a general formulation that includes,
among others, nonlinear equations, optimization problems, complementarity prob-
lems and fixed point problems. Variational inequalities were originally developed
as a tool for the study of certain partial differential equations classes such as those
that arise in mechanics. We define the next interval variational-like inequality
problems.

The Stampacchia Interval Variational-Like Inequality Problem (SIV LIP )
finds x∗ ∈ X such that there exists no x ∈ X satisfying

∫ T

0

∇̃F (x∗(t), t)η(x(t), x∗(t), t)edt ≺ [0, 0]

The Minty Interval Variational-Like Inequality Problem (MIV LIP ) finds
x∗ ∈ X such that there exists no x ∈ X satisfying

∫ T

0

∇̃F (x(t), t)η(x∗(t), x(t), t)edt � [0, 0]

In some recent contributions, the Minty variational inequality problem has
been termed a ”dual” variational inequality problem in order to indicate its close
relationship to the classical ”primal” Stampacchia Inequality.

Let us now look for the conditions under which we can relate the Stampacchia
Interval Variational-Like Inequality Problem (SIV LIP ) solutions with the weak
minimums of (ICTP ).

Theorem 5. Let F : V × [0, T ]→ KC be a gH-differentiable function.

If φ(x) =
∫ T
0
F (x(t), t)dt is a pseudoinvex (PIX) function respect to η and x∗

solves the Stampacchia Interval Variational-Like Inequality Problem (SIV LIP )
respect to the same η then x∗ is a weak minimum for (ICTP ).
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5 Conclusions and future research

In this work, we have defined the Stampacchia and Minty Interval Variational-
Like Inequality Problems and we relate their solutions with the weak minimum
for the Interval Continuous-Time Problem and Fuzzy Optimization Problem,
under invexity hypothesis.

These results generalize another obtained in Euclidean spaces with classical
mathematical programming problems or Continuous-Time Problems. We can
generalize the Walrasarian equilibrium price model, the Wardrop’s principle for
traffic equilibrium problem and the oligopolistic market equilibrium problem to
an environment of interval-valued functions.

An open question could be the study of optimality conditions able to charac-
terize psuedoinvex functions through critical points in Interval Continuous-Time
Problems, that have not been studied in the literature up to now.
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Abstract. Event processing queries are intended to process continuous
event streams. These queries are partially similar to traditional SQL
queries, but provide the facilities to express rich features (e.g., pattern
expression, sliding window of length and time). An error while imple-
menting a query may result in abnormal program behaviors and lost
business opportunities. Mutation testing has been found to be effective
to assess test suites quality and generating new test cases. In this work,
we propose mutation-based testing of the Event Processing Language
(EPL) 4.9.0 (a domain-specific language for processing events), muta-
tion operators which modify different features of EPL queries and a new
mutation analysis testing tool for EPL (MuEPL). Moreover, to evaluate
MuEPL, we have applied to EPL programs.

Keywords: Mutation Testing, Event Processing Queries, Event Pro-
cessing Language

1 Introduction

Mutation testing is a fault-based testing technique that introduces simple syn-
tactic changes in the original program by applying mutation operators. Unlike
other fault-based strategies that directly inject artificial faults into the program,
the mutation method generates syntactic variations, mutants, of the original
program by applying mutation operators. Each mutation operator represents
“typical“ programming errors, that the developer could make.

All mutants need to be run against the test suite to determine whether they
can be told apart from the original program in some of its test cases. When a
mutant can be told apart from the original program, the mutant has been killed
by the test suite.

As for real-time, mutation testing has been applied to many traditional pro-
gramming languages that have been growing and now they can be applied to
real-time systems: Java [1], C [2], Ada [3]. The present study uses the mutation
testing as a way to test a non traditional programming language. We apply muta-
tion testing to a programming language created to be used in real-time systems,
more particularly in Complex Event Processing (CEP) systems. To achieve this
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goal its mutation operators must be defined, a mutation tool for the CEP system
must be developed and finally they have to be tested (operators and mutation
tool) using examples. Moreover, the mutation tool must satisfy certain real-time
system peculiarities that hinder its implementation.

The structure of the rest of the paper is as follows: An introduction about
mutation testing and EPL language are respectively shown in Section 2 and
Section 3. Section 4 defines and clasifies the EPL mutation operators. Section 5
presents MuEPL, mutation testing tool for EPL. Section 6 describes the exam-
ples where MuEPL will be applied and evaluates the obtained results. Section 7
presents conclusions and future work.

2 Mutation Testing

Mutation testing is a fault-based testing technique providing a test criterion:
the mutation score. This criterion can be used to measure the effectiveness of a
test suite in terms of its ability to detect faults. Mutation testing generates mu-
tants from the program under test by applying mutation operators to it. These
mutation operators introduce slight syntactical changes into the program that
should be detected by a high-quality test suite. Each mutation operator repre-
sents ”typical“ programming errors, that the developer could make. Thus, if a
program contains the instruction a > 2000 and we apply the relational muta-
tion operator (which replaces a relational operator with another), the resulting
mutant could contain the instruction a >= 2000 instead, for example. If a test
case is able to distinguish between the original program and the mutant, i. e.
their outputs are different, it is said that this test case kills the mutant. On
the contrary, if no test case in the test suite is able to distinguish between the
mutant and the original program, it is said that the mutant stays alive. An equiv-
alent mutant always produces the same output as the original program, hence
it cannot be told apart from the original program. At this point it is necessary
to clarify that program is used to denote the software under test, which could
be a complete program or some smaller unit, such as a query.

3 Event Processing Language

Esper [4] is an open-source Java-based software product for Complex Event
Processing (CEP) and Event Stream Processing (ESP), that analyzes series of
events for deriving conclusions from them. It offers a domain-specific language
for processing events called Event Processing Language (EPL). EPL is a declar-
ative programming language for analyzing time-based event data and detecting
situations as they occur.

EPL is a SQL like query language. However, unlike SQL that operates on
tables, EPL operates on continuous stream of events. As a result, a row from
a table in SQL is analogous to an event present in an event stream. An EPL
statement starts executing continuously during runtime. While the execution is
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taking place, EPL queries will be triggered if the application receives pre-defined
or timer triggering events.

EPL 4.9.0 query example

select A as temp1, B as temp2 from pattern

[every temp1.temperature > 400 -> temp2.temperature > 400]

EPL 4.9.0 is one of the latest versions of this language. In the above example
a ”Central“ needs to measure the temperature of its systems, its temperature
gauges take a reading of the core temperature every second and send the data to
a central monitoring system. The EPL query of the figure, warns us if we have
2 consecutive temperatures above a certain threshold (400). This is a situation
where it is needed to react quickly to emerging patterns in a stream of data
events.

4 EPL mutation operators

In a previous work [5], was defined a list of mutation operators, some of them
have been re-defined, and a new one has been defined. After checking several EPL
queries that where used in real examples, the number of operators turn into 17.
Due to the decreased number of mutation operators, the operators have been re-
classified in four categories depending on which kind of EPL query element the
are related to. These are identified by uppercase letters: P (Pattern expression
operators), W (Windows operators), R (Replacement operators)1 and I (SQL
Injection attack operators).

Operators are uniquely identified by three uppercase letters: the first one is
the category identifier, and the last two letters indicate the operator within the
category. The Table 1 lists their names and provides a short descriptions of each
of them. Some operators are specific for the EPL language, they appear marked
with I.

5 MuEPL architecture

MuEPL lets us apply mutation analysis to EPL 4.9.0 queries, and it is the first
tool with this capability. Figure 1 shows the relations between these components.

The capturer obtains the queries while the original program is under exe-
cution. Next the analyser receives the original queries and generates the infor-
mation about which mutation operators can be applied and in which locations.
This information is delivered to the mutant generator, which generates every
possible mutant. Then, the execution engine runs the original and its mutant
against the set of test cases and compares their behaviours to determine whether
the mutants have been killed or stay alive.

1 The Replacement operators may appear in the pattern of the query, but we consid-
ered extend their definition and apply them not only to the pattern but also to the
rest of the query.
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Due to the data nature which MuEPL deals with (events in real-time), we
must ensure that all the programs receive the same events. This is because we
want study the behaviour of the original program and the generated mutants
under the same conditions. To achieve this, the execution system includes a
mechanism that can synchronise the execution threads (original and mutants).
This mechanism builds a ”barrier“ where all threads must wait, until all threads
reach it, before any of the threads can continue.

Operator Description

Pattern Expression Mutation

PNE I Removes the not keyword of the negated conditional expressions in the
pattern

PTI I Increases the timer value by one unit in the pattern observer (timer:at,
timer:interval)

PTD I Decreases the timer value by one unit in the pattern observer (timer:at,
timer:interval)

Replacement Mutation

RLO Replaces a logical operator (and, or) by another of the same kind
RTU Replaces one time unit (milliseconds, seconds, minutes, hours, days) by

another of the same kind
RAF Replaces an aggregate function (max, min, avg, sum, count, median, stddev,

avedev) by another of the same kind. The distinct keyword could be also
added

RAO Replaces an arithmetic operator (+, -, *, /, %) by another of the same kind
RRO Replaces a relational operator (=, <>, <, >, <=, >=) by another of the same

kind
RNO Replaces a number e by e + 1 and e - 1

Windows Mutation

WLI I Increases the data window length by one
WLD I Decreases the data window length by one
WTI I Increases the time window by one
WTD I Decreases the time window by one
WBL I Turn a batch window length into a ordinary window length
WBT I Turn a batch window time into a ordinary window time

Injection Attack Mutation

IRC Removes “where” condition from a query
INC Negates the condition expression of a query

Table 1. EPL mutation operators

6 Applying Mutation Testing to EPL programs

All the experiments in this section have been run in a Intel Core i7 machine with
4GB RAM and a 2.00GHz x 4, running Ubuntu 14.04 LTS.

We have used two programs from EsperTech website [4] to experimentally
evaluate the mutation operators for EPL and MuEPL. The chosen programs are:
Self-Service Terminal and Transaction 3-Event Challenge.
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Fig. 1. MuEPL architecture

For each program it was needed to include a seed as input (and modify the
random code which receive it). This is another undertaken measure to study the
behaviour of the programs under the same circumtances.

Self-Service Terminal is about a J2EE-based self-service terminal managing
system in an airport that gets a lot of events from connected terminals. The
event rate is around 500 events per second. Some events indicate abnormal
situations such as ”paper low“ or ”terminal out of order“. Other events
observe activity as customers use a terminal to check in and print boarding
tickets.
This program executes 6 queries, and for these queries 16 of the 17 mutation
operators are applicable and we have used a test suite of 5 test cases. The
non-applied mutation operator is: RAF, and are generated 79 mutants. The
exhaustive execution of 80 threads (mutants + original) in parallel against
each of the 5 test cases takes more than 3’15 hours in total.

Test cases Outputs

Iterations Sec. Seed Killed Live Fail

100 20 10 72 7 0
1000 50 25 76 1 2
2500 100 25 78 0 1
10000 250 15 76 1 2
25000 100 0 78 0 1

Table 2. Self-Service Terminal outputs

The live mutants for the first test case are from the operators: PTD (1),
RAO (2), RRO (1), RTU (3). In the second test case is from RRO, and for
the fourth test case is from RTU. It is worth remarkable how the outputs
of different mutants, depending on the number of iterations and the sleep
seconds, are failed.
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Transaction 3-Event Challenge tracks three components of a transaction.
The example uses at least three components, since some engines have differ-
ent performance or coding for only two events per transaction. Each com-
ponent comes to the engine as an event that are generated by the included
”event generator“. The transaction events come completely out of order; a
bucket (with a modifiable size) is filled, and when it is full, it is shuffled.
The larger the bucket size, the more events potentially come in between two
events in a given transaction and so, the more the performance characteris-
tics like buffers, hashes/indexes and other structures are put to the test as
the bucket size increases.
This program executes 5 queries, and for these queries 9 of the 17 mutation
operators are applicable. The applied mutation operators are: RLO, WTI,
WTD, RTU, WBT, IRC, INC, RAF, RAO and RRO, and are generated 435
mutants. The machine was not able to run 436 threads (original + mutants)
in parallel against the simplest test cases: bucket size ”tiniest“ (20), number
of transactions 10, seed 10.

7 Conclusions and future work

The present study propose the mutation testing as a way to test a programming
language developed to be used in real-time systems, EPL. In spite of being a
query language, the execution of all the mutants have a high cost. This is because
of the main drawbacks of mutation testing: commonly there is a large number
of mutation operators that generate a wide numbers of mutants, each of them
must be executed against the test suite. Under certain conditions described in
an empirical study by Offut et al. [6], the number of mutants has quadratic
complexity in program size.

Several techniques have been described to solve this problem; one of them is
mutant reduction technique, which process only a subset of all the mutants. As
a future work, MuEPL will be adapted to apply one of the mutant reduction
techniques: Evolutionary Mutation Testing (EMT) [7], that finds mutants that
help derive new test cases that improve the quality of the initial test suite.
Applying EMT, we will obtain strong mutants: suviving mutants (which have
not been killed by the test suite) and difficult to kill mutants (which have been
killed by one and only one test case that kills no other mutant). According to
our study, the mutations can be hard to find in quick executions (less number
of iterations), so we have to focus our experiments on this kind of test cases.
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Abstract. We study compatible aggregation functions on a general bounded
distributive lattice L, where the compatibility is related to the congru-
ences on L. Surprisingly, a new characterization of discrete Sugeno inte-
grals is obtained.

1 Introduction

A deeper study of aggregation problems on bounded lattices was encouraged
at a recent conference ABLAT 2014. Recall that an n-ary aggregation func-
tion g:Ln → L, where (L, 0L, 1L,≤) is a bounded lattice (or, more generally, a
bounded poset) is characterized by its non-decreasingness in each coordinate and
by two boundary conditions g(0L, . . . , 0L) = 0L and g(1L, . . . , 1L) = 1L. Typical
aggregation functions on a bounded distributive lattice are lattice polynomials
p:Ln → L given by

p(a1, . . . , an) =
∨

I∈J

(∧

i∈I
ai
)
,

where J ⊆ 2{1,...,n} is a non-empty subset of the power set of {1, . . . , n}.
The main aim of this short note is the study of n-ary aggregation functions

on a bounded distributive lattice L which preserve congruences on L. As a by-
product, a new characterization of discrete Sugeno integrals on L is obtained,
covering also the basic case of the real unit interval L = [0, 1]. Therefore, in the
next section some basic information concerning Sugeno integrals is given. Section
3 brings our main results, characterizing aggregation functions preserving the
congruences on L. In Section 4 the impact of our new results to the standard
Sugeno integral is given. Finally some concluding remarks are added.

2 Sugeno integral

Sugeno integral was introduced in 1972 by M. Sugeno in a paper written in
Japanese, and it became well-known due to Sugeno’s PhD. thesis [10]. For a
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measurable space (X,A) and a monotone measure m:A → [0, 1], (m(∅) = 0,
m(X) = 1), the Sugeno integral Sum(f) of a measurable function f :X → [0, 1]
is given by

Sum(f) =
∨

t∈[0,1]

(
t ∧m({x ∈ X | f(x) ≥ t})

)
. (1)

For a finite space X = {x1 . . . , xn}, A = 2X , f :X → [0, 1] can be identified
with a vector u ∈ [0, 1]n, u = (u1, . . . , un) =

(
f(x1), . . . , f(xn)

)
, and formula

(1) can be rewritten into

Sum(f) =
n∨

i=1

(
ui ∧m({x ∈ X | f(x) ≥ ui})

)
. (2)

An alternative formula for the discrete Sugeno integral was proposed in [9]:

Sum(f) =
∨

I⊆{1,...,n}

(
m(I) ∧

(∧

i∈I
ui
))
. (3)

Observe that the Sugeno integral can be seen as a special instance of Ky Fan
metric [6] as a distance of the function f and the zero function 0. There are
several properties of the discrete Sugeno integral and some of their settings yield
an axiomatic characterization of this integral. First of all, for a fixed m ∈ N,
Sum can be seen as an aggregation function [3], i.e., Sum: [0, 1]n → [0, 1] is non-
decreasing in each coordinate, and it satisfies two boundary conditions Sum(0) =
0 and Sum(1) = 1. Next, Sum is

– comonotone maxitive, i.e., Sum(f ∨ g) = Sum(f)∨Sum(g) whenever f and g
are comonotone (meaning that they are measurable with respect to a single
chain in 2X);

– min-homogeneous, i.e., Sum(c ∧ f) = c ∧ Sum(f) for any constant c ∈ [0, 1],
c = (c, . . . , c) ∈ [0, 1]n;

– horizontally maxitive, i.e., Sum(f) = Sum(c∧ f)∨Sum(fc) for any c ∈ [0, 1],
where fc(xi) = 0 if f(xi) ≤ c and fc(xi) = f(xi) otherwise (observe that fc
is the smallest function on [0, 1]n such that f = (c ∧ f) ∨ fc );

– Sum(1E) = m(E), where 1E is the characteristic function of a set E ⊆ X;
– idempotent, i.e., Sum(c) = c for any c ∈ [0, 1].

For these and several other properties of the discrete Sugeno integral we refer
to [1, 7] and [2]. Based on the above references, the Sugeno integral can be charac-
terized as an [0, 1]n → [0, 1] aggregation function which is comonotone maxitive
and min-homogeneous. Observe that the comonotone maxitivity can be replaced
by the horizontal maxitivity. For some other axiomatizations of the Sugeno in-
tegral see [2]. Marichal [8] has observed an important link between the lattice
polynomials on [0, 1] and the Sugeno integral. More precisely, he has shown that
the class of all Sugeno integrals on X with cardinality n coincides with the
class of all polynomial functions p:Ln → L, L = [0, 1], which are idempotent.
This result applies to discrete Sugeno integral defined on any bounded chain
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L, considering the formulae (1)–(3), and replacing [0, 1] by L. Also the above
mentioned axiomatizations of the Sugeno integral can be extended to any chain
L. However, in the case of a general bounded distributive lattice (L, 0L, 1L,≤),
one can apply formula (1) or (3), but not (2), in general. Hence, we can consider
a lattice valued measure m: 2X → L, m(∅) = 0L, m(X) = 1L, m(E1) ≤ m(E2)
whenever E1 ⊆ E2 ⊆ X, and for any f :X → L define a discrete L-valued Sugeno
integral by

Sum(f) =
∨

I⊆{1,...,n}

(
m(I) ∧

(∧

i∈I
f(xi)

))
. (4)

For more details we recommend [2].

3 Compatible aggregation functions on distributive
lattices

In this section we clarify the connection between monotone compatible functions
on distributive lattices and their lattice polynomials. As the main result we will
show that these functions can be identified with Sugeno integrals.

Recall that a lattice L is distributive, if it satisfies one (or, equivalently, both)
of the distributive identities

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b, c ∈ L.

Definition 1. Let L be a lattice. A binary relation R ⊆ L2 is compatible on the
lattice L if (a, b), (c, d) ∈ R imply (a∨ c, b∨ d) ∈ R and (a∧ c, b∧ d) ∈ R for any
a, b, c, d ∈ L. By a congruence on L we understand any compatible equivalence
on L.

Definition 2. Let L be a lattice and n ∈ N ∪ {0} be a non-negative integer. By
an n-ary polynomial on the lattice L we mean any function p : Ln → L defined
inductively as follows:

– for each i ∈ {1, . . . , n}, the i-th projection p(x1, . . . , xn) = xi is a polynomial,
– any constant function p(x1, . . . , xn) = a for a ∈ L is a polynomial,
– if p1(x1, . . . , xn) and p2(x1, . . . , xn) are polynomials, then so does the func-

tions p1(x1, . . . , xn) ∨ p2(x1, . . . , xn) and p1(x1, . . . , xn) ∧ p2(x1, . . . , xn),
– any polynomial is obtained by finitely many of the preceding steps.

Informally, lattice polynomials are functions obtained by composing variables
and constant functions by using of lattice operations. Note that polynomials
defined in this way are called as weighted lattice polynomials in [8].

To simplify expressions, for any n-ary function f : Ln → L on a lattice L
and x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Ln, we put f(x) := f(x1, . . . , xn), and
x ≤ y iff xi ≤ yi for all i ∈ {1, . . . , n}.
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Definition 3. Let L be a lattice. A function f : Ln 7→ L is called compati-
ble if for any congruence θ on L, if (xi, yi) ∈ θ for all i ∈ {1, . . . , n}, then(
f(x), f(y)

)
∈ θ.

It can be easily seen that for any lattice, its polynomials are always com-
patible functions. Recall, that compatible relations and compatible functions
represent the well-known notions, investigated in connection with various alge-
braic structures. In particular, compatible functions on distributive lattices have
been studied in deep by many authors, we refer the reader to [4] or [5].

Now, let g be an n-ary compatible aggregation function on a bounded dis-
tributive lattice (L, 0L, 1L,≤) (not necessarily finite!). We associate with g a
function ḡ : {0L, 1L}n 7→ L given by stipulation

ḡ(x) := g(x).

The function ḡ is called a characteristic function of g.
Surprisingly, as shown in [4], ḡ completely characterizes g:

Lemma 1. [4] Let g be a compatible aggregation function on a distributive lattice
L. Then the characteristic function ḡ determines g uniquely.

Let us note that Lemma 1 uses the fact that every distributive lattice L
can be (canonically) embedded into a Boolean algebra (using a set-theoretical
representation of L). Then the representation of a compatible function f on L
can be written in the form

f(x1, . . . , xn) =
∨{(

f(a) ∧
∧

i∈a−1(1L)

xi ∧
∧

i∈a−1(0L)

x′i
) ∣∣ a ∈ {0L, 1L}n

}
,

where the complements ′ refer to this Boolean algebra and for a ∈ {0L, 1L}n
the symbol i ∈ a−1(1L) denotes the fact that ai = 1L, while i ∈ a−1(1L) denotes
ai = 0L, see [5].

To obtain the main result of the paper, we modify the approach developed
in [5]. For any a ∈ {0L, 1L}n consider the functions

Ga(x) := g(a) ∧
∧{

xi | i ∈ a−1(1L)
}
. (5)

Theorem 1. For any monotone compatible function g the following equality
holds:

g(x) =
∨{

Ga(x) | a ∈ {0L, 1L}n
}
. (6)

Proof. Since functions on the both sides are compatible, due to Lemma 1, it
is enough to prove the above equality only for boolean inputs x ∈ {0L, 1L}n.
Consider an arbitrary a ∈ {0L, 1L}n. We have the following possibilities:

(1) Let a � x. Then there is j ∈ {1, . . . , n} with aj = 1L (i.e., j ∈ a−1(1L)) and
xj = 0L, which yields

∧{xi | i ∈ a−1(1L)} = 0L. Consequently, we obtain
Ga(x) = g(a) ∧ 0L = 0L.
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(2) Let a = x. Then, evidently,
∧{xi | i ∈ a−1(1L)} =

∧{xi | i ∈ x−1(1L)} =∧
1L = 1L whenever a−1(1L) 6= ∅, and it equals

∧ ∅ = 1L in case a−1(1L) =
∅. In both cases we obtain Ga(x) = g(a)∧1L = g(a) = g(x) since we assumed
a = x.

(3) Assume a < x. Then as the function g is monotone and a < x, we conclude
Ga(x) ≤ g(a) ≤ g(x).

The above discussion leads to the desired equality

g(x) =
∨{

Ga(x) | a ∈ {0L, 1L}n
}
.

ut

Consequently, we obtain

Corollary 1. Compatible aggregation functions on distributive lattices are just
their weighted idempotent lattice polynomials.

Let us stress that this statement does not depend on the cardinality of a
lattice L, and hence it holds also in a classical case when L = [a, b] is any
bounded interval of reals.

4 Sugeno integral as a compatible aggregation function

Consider a lattice ([0, 1], 0, 1,≤), where L = [0, 1] is the real unit interval. Then
each element a ∈ {0, 1}n can be identified with a characteristic function of a
subset I of {1, . . . , n}, a = 1I . Comparing formulae (3) and (6), the next result
is obtained easily.

Theorem 2. Let A: [0, 1]n → [0, 1] be an aggregation function. Then the follow-
ing are equivalent:

(i) A is a compatible function
(ii) there is a monotone measure m on {1, . . . , n} so that A = Sum, i.e., A is

the Sugeno integral with respect to the measure m.

Note that the monotone measure m in Theorem 2 is given by m(I) = A(1I).
Our result brings a new characterization of the classical Sugeno integral in dis-
crete setting. Evidently, due to (4), Theorem 2 can be extended to any bounded
distributive lattice (L, 0L, 1L,≤).

5 Concluding remarks

We have introduced a new property which characterizes the discrete Sugeno
integral not only in its original form, when [0, 1]-valued functions and measures
are considered, but also in the case of general bounded lattices. This property,
compatibility, has an important impact for decision procedures which will be the
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topic of our next investigations. Here we recall only the next fact: in multicriteria
decision problems based on n criteria and dealing with alternatives described by
score vectors from [0, 1]n, often the exact numerical scores are replaced by some
ordinal scale, e.g. by a linguistic scale. The transition from numerical inputs
to linguistic values is done by means of interval partitions of the original scale
[0, 1]. When looking for normed utility functions (i.e., aggregation functions)
where the output recommendation based on linguistic values does not depend
on the numerical values of score vectors, then due to Theorem 2 only Sugeno
integrals (i.e., idempotent polynomials) can be considered.
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lichkeit, Mathematische Zeitschrift 49(1), 681–683 (1943).

7. Marichal, J.-L.: Aggregation Operators for Multicriteria Decision Aid, Ph.D. Thesis,
Institute of Mathematics, University of Liège, Liège 1998.
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Abstract. This article describes a multiobjective evolutionary algo-
rithm applied to locating roadside infrastructure for vehicular networks
over realistic urban areas. A multiobjective formulation of the problem
is introduced, considering quality-of-service and cost objectives. In the
experimental analysis performed over a real map of Málaga, using real
traffic information and antennas, the proposed multiobjective evolution-
ary algorithm computes accurate trade-off solutions for the problem.

1 Introduction

Vehicular ad hoc networks (VANETs) comprise a set of communicating nodes
(vehicles) equipped with on-board units and roadside units (RSUs) installed be-
side the roads. RSUs act as network access points with higher communication
capabilities than the vehicles. Thus, if two mobile nodes cannot directly exchange
information because they are out of range, they can use RSUs to relay informa-
tion between each other via vehicle-to-infrastructure communications. Using a
fixed infrastructure of RSUs is an efficient alternative in order to improve the
communication capabilities of VANETs.

Fig. 1. Global VANET architecture.

Deploying such an infrastructure
is a challenge because designers must
decide about the number, type, and
location of RSUs to maximize quality-
of-service (QoS), while satisfying the
deployment cost requirements.

The RSU Deployment Problem
(RSU-DP) consists of placing a set of
RSU terminals along the roads of a
given area, maximizing the network
QoS and minimizing the deployment costs. This is a hard-to-solve optimiza-
tion problem on city-scaled areas, as the number of possible solutions is very
large [4]. Heuristics and metaheuristics are promising methods to deal with the
RSU-DP because they allow computing good infrastructure designs in reduced

J. Toutouh is supported by Grant AP2010-3108 of the Spanish Ministry of Education. University of Malaga,
International Campus of Excellence Andalućıa Tech.
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execution times [1, 5]. Evolutionary algorithms (EAs) have emerged to success-
fully deal with complex optimization problems. In this study, we propose using
the NSGA-II evolutionary algorithm [2] to optimally design the RSU infrastruc-
ture within a city-scaled road network in Málaga (Spain). In order to obtain
realistic results, we consider real information about road traffic (traffic flows
and road map) and hardware (network capabilities and costs).

Our main contributions are: i) introducing a fully multiobjective evolutionary
approach to solve the RSU-DP; ii) considering realistic scenarios, larger than
those solved in the related literature and accounting for real traffic data; iii)
reporting accurate results for cost and QoS for the problem instances considered.

The article is organized as follows. Section 2 introduces the multiobjective
version of the RSU-DP and reviews related work on the topic. Section 3 intro-
duces evolutionary computation and the proposed MOEA to solve the problem.
Section 4 reports the experimental evaluation, including a comparison against
two intuitive greedy heuristics to solve the problem. Finally, Section 5 formulates
the conclusions and the main lines for future work.

2 The RSU Deployment Problem

The RSU-DP considers the following elements:

– A set of road segments S = {s1, . . . , sn} for placing RSUs along the streets.
Each segment si is defined by a pair of points pj , pk ∈ P = {p1, . . . , pm}.
Each point pj is identified by its geographical coordinates (latitude, longi-
tude). RSUs can be placed at any location within each segment si.

– An estimation of the number of vehicles per time period across each segment
si, V N(si), and the average vehicle speed for each segment sp(si).

– A set of RSU types T = {t1, . . . , tk}, each one with a given gain and trans-
mission power that determines the covering area and the cost of the RSU.

The multiobjective version of the problem proposes to find a set of locations
and the type of each RSU to deploy in each location, with the goal of maximizing
the number of vehicles served by the RSU infrastructure (considering the cover-
age, number of vehicles, and speed per each road segment), while simultaneously
minimizing the total cost of deployment.

Related works. Some works have applied EAs to RSU-DP variants. An early
work studied applying a genetic algorithm (GA) that uses a VANET simula-
tor to evaluate the QoS of computed solutions for a given area of Brunswick,
Germany [3], considering 100 possible predefined locations for RSUs. The re-
sults show that a good cost/utility trade-off is obtained using between 10 and 30
RSUs. Cavalcante et al. [1] compared a GA against a greedy approach to solve
the maximum coverage with time threshold problem using data form four Swiss
regions. The GA obtained better vehicle coverage than the greedy approach.

In the review of related works, we did not find articles using explicit multi-
objective methods for this specific problem. Furthermore, the use of MOEAs to
solve the problem has not been studied. Thus, there is room to contribute in this
line of work by studying efficent and accurate MOEAs to solve the RSU-DP.
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3 A Multiobjective Evolutionary Algorithm for RSU-DP

This section presents the details of the proposed MOEA for RSU placement.
Solution encoding. Solutions are represented as real arrays of length n = #S.

Each position on the array holds the RSU information: the type is given by
the integer part of the real number (0 stands for no RSU, and integers 1 . . . k
represent types t1 . . . tk); position within the segment is given by the fractional
part of the real number, mapping the interval [0, 1) to points in the segment
[pj , pi). For instance, a value of 3.5 in position 5 of the tuple, means that in
segment number 6 a RSU of type 3 is placed at the middle of the segment.

Evolutionary operators. Population is randomly initialized, using reals from
the interval [0, k + r] being k the number of RSU types in T , and r ∈ [0, 1).
Given that one of the extremes of the ideal Pareto front is known (the solution
that places no RSU has cost 0), we add that solution to the initial population.
Future work includes adding solutions computed by greedy algorithms to the
initial population as well. The crossover operator is Intermediate Recombination;
offspring of parents x and y satisfy αixi + (1− αi)yi and βiyi + (1− βi)xi with
αi, βi randomly chosen in [−p, 1 +p] for a given p. An ad-hoc mutation operator
was designed to provide diversity to the search: with probability πA we remove
the RSU (if any) from the segment, with probability πB we change the type of
the RSU (if any) to a random type picked uniformly in T , and with probability
1− πA − πB we apply a Gaussian Mutation with a standard deviation of σ.

s2 P1 RSU 
P0 

P3 

P4 

s1 

s3 

c1 

s4 

c2 

× 
c3 

c4 

street A 
P2 

st
re
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 B

 

Fig. 2. Calculation of the vehicles attended
by a RSU.

Computing the objective functions.
Computing the total cost is straight-
forward, by adding the cost (accord-
ing to the type) of each RSU placed in
the scenario. For computing the QoS,
we consider the distances and values
in Figure 2: the RSU placed in the
point “×” covers the subsegments c1
(in s1), c2 (in s2), in street A, and c3
(in s3), and c4 (in s4) in street B. The
number of effective vehicles attended
is computed by

∑i=4
i=1NV (si)× ci

sp(si)
.

This requires computing the intersec-
tions between the road segments and
the circle representing the coverage of the RSU. Given that the distances involved
in the problem are relatively small, we use straight lines in the latitude-longitude
space as an estimation, with negligible error. This approximation makes com-
putation faster, thus improving the overall performance of the algorithm. Since
the distance of a degree of longitude depends on the latitude, it is necessary to
adjust for that by multiplying the longitude by the cosine of the latitude.

Parametric configuration. We performed an analysis to find the best values for
NSGA-II parameters. In the parameter setting experiments, the best results were
obtained using the configuration: population size=72, crossover probability=0.95,
mutation probability=0.01, πA=0.5, πB=0.25, and σ=0.25.

40



4 Experimental Analysis

Problem instances. We defined a real world problem instance based on a real map
of Málaga, real road traffic data, and real RSU network interfaces/antennas.

The map covers an area of 42.557 km2, including a number of 106 points,
defining 121 segments with lengths between 55 and 1556 m. The RSUs hard-
ware are equipped with a IEEE 802.11p network interface, connected to an
external antenna to improve the communication range according to a given
antenna gain. Three types of IEEE 802.11p antennas are considered, accord-
ing to three commercial omni-directional antennas from Cetacea Wireless shop
(https://shop.cetacea.com/, see Table 1).

Table 1. General information about the antennas used to define different RSUs.

type commercial model gain ERR cost

t1 Echo Series Omni Site Antenna 6 dBi 243.12 m 121.70 $
t2 Echo Series Omni Site Antenna 9 dBi 338.70 m 139.20 $
t3 Echo Series Omni Site Antenna 12 dBi 503.93 m 227.50 $

In order to define the effective radio range (ERR) of each RSU, we evaluated
the average percentage of data packets delivered correctly (packet delivery ratio,
PDR), at different distances (from 0 to 650 m) for each RSU. Finally, to ensure
a competitive QoS, we defined the ERR of each RSU as the distance at which
the average PDR is equal or higher than 66.667%.

Comparison against two greedy strategies. We compare the results achieved
by the proposed MOEA against two greedy heuristics. For the QoS objective,
the greedy strategy places RSUs sequentially over non-covered segments starting
with those with the higher ratio between number of vehicles and average speed.
A segment is considered covered if it has a portion of λ inside the coverage area
of any RSU. The greedy strategy for cost is analogous, but stops when the QoS
of the solution is equal to α ·Q where Q is the best QoS value achieved by the
greedy algorithm for QoS using λ = 0.75 and α ∈ [0, 1]. For the experimental
analysis the greedy algorithm for QoS was executed using λ ∈ {0.90, 0.95, 1.0}
and the greedy algorithm for cost was executed using α ∈ {0.70, 0.75, 0.80}.

Execution environment. The experimental analysis was performed using 24
cores on an AMD Opteron 6172 2.10 GHz with 24 GB RAM at Cluster Fing:
the high performance computing facility at Universidad de la República. Since
computing the fitness of an individual is highly CPU-intensive, the evaluation
of the population is done in parallel using 24 threads, thus each thread evalu-
ates 3 individuals of the population. For each probem instance, we performed
20 independent runs of the MOEA and of both greedy algorithms.

Numerical results. In the experimental analysis the proposed MOEA has
shown a good solving capability. NSGA-II significantly outperforms the two
greedy heuristics while computing accurate Pareto fronts. Table 2 reports the
best improvement of the proposed MOEA over the greedy strategies. NSGA-II is
able to improve the QoS achieved by the greedy heuristic for cost in up to 73.9%
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while keeping the same cost and improve up to 365.1% the cost achieved by the
greedy heuristic for QoS while keeping the same QoS. Table 3 shows average,
standard deviation and best results for standard multiobjective optimization
metrics, where the small generational distance and spread values suggest both
good convergence to an hypothetical ideal pareto front as well as good distri-
bution among the non-dominated solutions. Finally, Figs. 3–4 show the global
Pareto fronts achieved by the MOEA against the best results obtained by the
greedy heuristics combining all 20 executions on normal and low traffic scenarios.

Table 2. Improvements over greedy heuristics.

instance
normal low high

RG cost 70 70.2% 67.7% 68.6%
improvement in cost RG cost 75 67.1% 68.1% 66.5%

RG cost 80 73.9% 69.7% 70.7%

RG QoS 90 299.3% 307.5% 333.4%
improvement in QoS RG QoS 95 337.9% 277.2% 344.7%

RG QoS 100 365.1% 331.4% 341.8%

Table 3. Multiobjective optimization metrics.

normal low high

generational distance 2.7±0.3 (2.0) 2.7±0.4 (1.5) 2.7±0.3 (2.0)
spacing 792.5±88.1 (615.5) 739.8±68.9 (587.4) 897.7±102.0 (719.1)
spread 0.4±4.9×10−2 (0.4) 0.4±4.3×10−2 (0.3) 0.4±4.1×10−2 (0.3)

relative hypervolume 1.0±1.7×10−2 (1.0) 0.9±1.9×10−2 (1.0) 0.9±1.9×10−2 (1.0)

Fig. 3. Global Pareto front and heuristics results (normal traffic instance)
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Fig. 4. Global Pareto front and heuristics results (low traffic instance)

5 Conclusions and Future Work

This article reports the advances on applying a multiobjective evolutionary ap-
proach to the problem of locating roadside infrastructure for vehicular networks
over realistic urban areas. In the experiments performed, the proposed MOEA
has shown good problem solving capabilities, computing accurate Pareto fronts
and significantly improving over two greedy heuristics for the problem: up to
73.9% in cost and 365.1% in QoS. We are working now on extending the exper-
imental analysis to other areas and considering additional information, such as
accidents, in order to model a more realistic scenario for the problem.
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Abstract. Fuzzy numbers have been applied on decision and optimiza-
tion problems in uncertain or vagueness environments. In these problems,
the necessity of defining optima notions for decision-maker’s preferences
as well as prove necessary and sufficient optimality conditions for these
optima are essential steps in order to deal with fuzzy optimization prob-
lems.

Keywords: Fuzzy numbers; crisp order relation; interval order relation;
differentiable fuzzy mappings; stationary fuzzy point; fuzzy optimization.

1 Introduction

In conventional mathematical programming, the coefficients of problems are as-
sumed to be deterministic and fixed in value. But there are many situations
where this assumption is not valid because of uncertain environments. The fuzzy
set theory, and particularly the concept of fuzzy number, provides an appropri-
ate theoretical framework to model quantities that are imprecise because their
own nature or some faults in measurement.

Fuzzy numbers have been applied on decision and optimization problems. In
these problems, the necessity of procedures to rank fuzzy numbers is obvious.
Ranking fuzzy numbers is a complex problem. All the proposed methods can be
classified as corresponding to two different approaches:

1. Ranking fuzzy numbers using crisp relations (see [1], [2]). These are the
procedures based on a ranking function and they provide a crisp total order
relation between fuzzy numbers.

2. Using ordering relations between compact intervals in R, using the fuzzy
numbers characterization by their level sets (see [3], [4]).

Since results of comparison in real problems affect implicated individuals, their
subjectivity should be reflected in the method for ranking.

We present the optimum definitions for fuzzy functions using the different
ordering relations defined; and we present and relate the optimality conditions
for the different optimum definitions given.
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A fuzzy set on Rn is a mapping µ : Rn → [0, 1]. For each fuzzy set µ, we
denote [µ]α = {x ∈ Rn|µ(x) ≥ α} for any α ∈ (0, 1] its α-level set. By supp µ we
denote the support of µ, i.e. {x ∈ Rn| µ(x) > 0}. By [µ]0 we define the closure
of supp µ.

Definition 1. A compact and convex fuzzy set µ on Rn is a fuzzy set with the
following properties:

1. µ is normal, i.e. there exists x0 ∈ Rn such that µ(x0) = 1;
2. µ(λx+ (1− λ)y) ≥ min{µ(x), µ(y)}, x, y ∈ Rn, λ ∈ [0, 1];
3. µ is upper semicontinuous, i.e., {x : µ(x) ≥ α}, is a closed set for all

α ∈ [0, 1]
4. the closure of the set {x : µ(x) > 0} is compact.

Let FC denotes the family of all compact and convex fuzzy sets on R, called
fuzzy numbers or fuzzy intervals. By definition the α-level sets of a fuzzy number
are closed real intervals

u ∈ FC ⇒ [u]α = [uα, ūα]

Theorem 1. [5, 6] A fuzzy interval is completely determined by any pair u =
(u, u) of functions u, u : [0, 1] → R, defining the endpoints of the α-level sets,
satisfying the following three conditions:
• u(α) = uα ∈ R is a bounded nondecreasing left-continuous function in (0, 1]
and it is right-continuous at 0;
• u(α) = uα ∈ R is a bounded nonincreasing left-continuous function in (0, 1]
and it is right-continuous at 0;
• u(α) ≤ u(α), for all α ∈ [0, 1].

We denote by FCC the family of all level-continuous fuzzy intervals. Thus
u ∈ FCC if the application α 7→ [u]α is continuous.

Proposition 1. Let u = (uα, uα) ∈ FCC be a fuzzy interval. Then, u ∈ FCC if
and only if uα and uα are continuous functions of α.

2 Ordering relations based on average functions

In [2] a ranking function is defined to compare fuzzy numbers. This function was
called ”average index” because it can be interpreted as a weighted average in the
following way: first, the decision-maker chooses a subset Y of the unit interval,
so that the associated level sets contain the information which is considered
outstanding about the imprecise quantity. Next, he assigns a weight, represented
by a probability distribution P , to the different elements or measurable subsets of
Y . Also, the decision-maker determines a position function, fu(α) giving to each
associated level sets a real number. Finally, the index is defined as an average of
positions of level sets in Y using P .
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Definition 2. Let u ∈ FC be a fuzzy number. Let fu(α) : [0, 1] → R such that
fu ∈ R(P ). The real number

VP (u) =

∫

Y

fu(α)dP (α)

is called average index of u.

By means of VP (·) a comparison relation on FC is built:

Definition 3. ∀u, v ∈ FC
– u ≤V v ⇔ VP (u) ≤ VP (v)
– u <V v if u ≤V v and VP (u) 6= VP (v)

In [2] the authors propose to choose one point included in each level set of u
as value for fu:

fλu : Y → R

fλu (α) = λu(α) + (1− λ)u(α)

where λ ∈ [0, 1] is an optimism-pessimism degree, which must be selected by the
decision maker: when the most advantageous decision is to choose the greatest
quantity, an optimistic person would think of the upper extreme of the interval u
(λ = 1), which reflects the greatest profit. On the contrary, a pessimistic person
would prefer the lower extreme of the interval u (λ = 0), which represents the
least he can win.

When the most advantageous decision is to choose the least quantity, the
interpretation is the opposite, with λ = 0 for the optimism and λ = 1 for
pessimism. Thus, if the optimism-pessimism degree of the decision-maker is µ ∈
[0, 1], the parameter λ for the function fλu is

λ =

{
µ if the ”best” is the ”greatest”
1− µ if the ”best” is the ”least”

Between the two extreme values λ = 0 and λ = 1 there is an attitudes scale for
the uncertainty for each decision-maker.

3 Ordering relations based on intervals

In [3] the authors propose order relations between alternatives which represent
the decision-maker’s preference when the cost of each alternative is known only
to lie in an interval.

Definition 4. Let A = [a, a], B = [b, b] be two closed intervals in R. The center
and the width of an interval may be calculated as AC = (a+ a)/2, AW = a− a.
Let us define order relations �

LW
, �

LR
and �

CW
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1. – A�
LW

B ⇒ a ≤ b and AW ≤ BW .
– A �LW B ⇒ A�

LW
B and A 6= B, i.e., a ≤ b and AW ≤ BW , with

some strict inequality.
– A ≺LW B ⇒ a < b and AW < BW .

2. – A�
LR
B ⇒ a ≤ b and ā ≤ b̄.

– A �LR B ⇒ A�
LR
B and A 6= B, i.e., a ≤ b and ā ≤ b̄, with some strict

inequality.
– A ≺LR B ⇒ a < b and ā < b̄.

3. – A�
CW

B ⇒ AC ≤ BC and AW ≤ BW .
– A �CW B ⇒ A�

CW
B and A 6= B, i.e., AC ≤ BC and AW ≤ BW , with

some strict inequality.
– A ≺CW B ⇒ AC < BC and AW < BW .

Basing on Theorem 1 we can order fuzzy numbers using the previous defini-
tion. We denote �∗ any of the orders defined.

Definition 5. For u, v ∈ FC
1. u�∗v if [u]α�∗[v]α, ∀α ∈ [0, 1]
2. u �∗ v if [u]α�∗[v]α,∀α ∈ [0, 1] and ∃α0/[u]α0 �∗ [v]α0

3. u ≺∗ v if [u]α �∗ [v]α ∀α ∈ [0, 1]

The order ≺LR represents the decision-maker’s preference for the alternative
with lower minimum cost and maximum cost and the order ≺LW represents the
decision-maker’s preference for the alternative with lower minimum cost and less
uncertainty since the width of an interval can be regarded as an uncertainty risk
or a type of variance and; ≺CW represents the preference for the alternative with
lower expected value and less uncertainty.

4 Fuzzy optimization. Minimum definitions

A mapping F : K ⊂ Rn → FC is said to be a fuzzy mapping. Each F (x) is a
fuzzy interval, that is uniquely determined by two functions such that

[F (x)]α = [f
α

(x), f̄α(x)] = [f(α, x), f̄(α, x)] ∀α ∀x ∈ K

Then for F , we define the family of interval-valued functions Fα : K → KC
given by Fα(x) = [F (x)]α, for any α ∈ [0, 1]. Here, for each α ∈ [0, 1], the
endpoint functions f

α
, fα : K → R are called lower and upper functions of F ,

respectively. Let us consider fuzzy functions F : K ⊆ R→ FCC so that VP (F (x))
is well defined.

Associated with the average index ordering relation and intervals ordering
relation we give the following minimum definitions for fuzzy minima:

Definition 6. It is said that x̄ is a (strict) minimumV for F if F (x̄) �L F (x)
(F (x̄) ≺L F (x)), ∀x ∈ K.
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Definition 7. It is said that x̄ is a (strict, weak) minimum∗ for F if there does
not exist x ∈ K such that F (x) �∗ F (x̄) (F (x)�∗F (x̄), F (x) ≺∗ F (x̄)).

Next we establish the relations among the different minimum types:

cuadro1.png

5 Necessary fuzzy optimality conditions

In classical optimization methods, it is well-known that the stationary point
concept (the one that cancels the derivative) plays a crucial role as a neces-
sary optimality condition for problems defined by differentiable functions, since
it allows to identify the potential candidates to be optimums. Different fuzzy
stationary points definitions [8–11] can we find in the literature.

In this section we give necessary optimality conditions based on appropriate
stationary point definitions for minimum concepts defined in the previous section
and they attend to the decision-maker’s attitude to the problem of choose the
favourite alternative.

Let us consider hereafter fuzzy functions F : S ⊆ R → FCC where S is an
open set and consider they are level-wise differentiable, [4].

Theorem 2. A fuzzy function F : S ⊆ R → FCC where S is an open set is a
level-wise differentiable fuzzy function if and only the endpoints functions associ-

ated are differentiable and [F ′(x)]α = [min{f ′
α

(x), f
′
α(x)},max{f ′

α
(x), f

′
α(x)}].

Remark 1. [7] If λ = 1
2 we can relax the hypotheses considering gH-differentiable

functions.

In order to guarantee that ∇V λP (F (·)) exists we suppose that ∇fλF (·) is con-
tinuous with respect to α, and together with P monotonicity we can ensure the
existence of the integral.

Definition 8. It is said that x̄ ∈ S is a stationary pointV for F if ∇V λP (F (x̄)) =
0 for some λ and P .

Theorem 3. If x̄ is a local minimumV then it is a stationary pointV .

Definition 9. It is said that x̄ ∈ S is a stationary pointLR for F if 0 ∈
[F ′(x̄)]0.

Theorem 4. If x̄ is a weak minimumLR then it is a stationary pointLR.

Now we give the relations between the stationary point definitions:

Theorem 5. x̄ is a stationary pointV for any λ ∈ [0, 1] and P , then x̄ is a
stationary pointLR.
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Abstract. In this article, we present the results given by [5], in which it is studied
generalized convexity for fuzzy mappings defined through a linear ordering on the
space of fuzzy intervals. It is shown that invexity is the minimal property on the
objective function so that a stationary point is an optimal solution. Furthermore,
and based on [1], we provide an extension of this optimization result given in
scalar case to multiobjective programming on fuzzy sets.

Keywords: Fuzzy mathematical programming; generalized Hukuhara differentia-
bility; generalized convexitity.

1 Introduction

The purpose of this article is to present results on the study of optimization on the space
of fuzzy intervals, focused on finding a linear ordering which allows us to characterize
the solutions. We start with some preliminaries on fuzzy intervals, following with the
definition of the order relation for a ranking value function τ. Next we have gathered
the results on differentiability of fuzzy mappings, the generalized differentiability, con-
vexity and optimality conditions in fuzzy optimization. Finally, we present the recent
results on extending the ranking function to multiobjective problem.

2 Preliminaries

Let KC denote the family of all bounded closed intervals in R, i.e.,

KC =
{[

a, a
]
| a, a ∈ R and a ≤ a

}
,

Given two intervals A = [a, a] and B = [b, b], we define the distance between A and B
by

H(A, B) = max
{∣∣∣a − b

∣∣∣ ,
∣∣∣∣a − b

∣∣∣∣
}
.

It is well known that (KC ,H) is a complete metric space [2].
A fuzzy set on Rn is a mapping u : Rn → [0, 1]. For each fuzzy set u, we denote

its α-level set as [u]α = {x ∈ Rn | u(x) ≥ α} for any α ∈ (0, 1]. The support of u is
denoted by supp(u) where supp(u) = {x ∈ Rn | u(x) > 0}. The closure of supp(u)
defines the 0-level of u, .i.e. [u]0 = cl(supp(u)) where cl(M) means the closure of the
subset M ⊂ Rn.
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Let FC denote the family of all fuzzy intervals. So, for any u ∈ FC we have that
[u]α ∈ KC is a nonempty compact and convex subset on R for all α ∈ [0, 1]. Thus the
α-levels of a fuzzy interval are given by [u]α = [uα, uα], uα, uα ∈ R for all α ∈ [0, 1].

For fuzzy intervals u, v ∈ FC represented by [uα, uα] and [vα, vα], respectively, and
for any real number λ, addition u + v and scalar multiplication λu are defined in [5].

Given u, v ∈ FC a distance between u and v is defined in [5], such that (FC ,D) is a
complete metric space.

We denote by FC
C the family of all level-continuous fuzzy intervals [13]. It is well

known that (FC
C ,D) is a separable and complete metric space [13]. Moreover, FC

C is a
closed subspace of FC .

Definition 1. Let u = (u, u) be a fuzzy interval. We say that u is a nonnegative fuzzy
interval (nonpositive fuzzy interval, respectively) if u(0) ≥ 0 (u(0) ≤ 0, repectively).

A crucial concept to obtain an useful definition of derivative for fuzzy functions
is the difference between two fuzzy intervals. Toward this end we have the following
definition[5].

Definition 2. ([18]) Given two fuzzy intervals u, v, the generalized Hukuhara difference
(gH-difference for short) is the fuzzy interval w, if it exists, such that

u 	gH v = w⇔
{

(i) u = v + w,
or (ii) v = u + (−1)w.

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.
Note that the case (i) is coincident to Hukuhara difference (see [11]) and so the concept
of gH-difference is more general than H-difference.

If u 	gH v exists then, in terms of α-levels, we have

[u 	gH v]α = [u]α 	gH [v]α =
[
min{uα − vα, uα − vα},max{uα − vα, uα − vα}

]
,

for all α ∈ [0, 1], where [u]α 	gH [v]α denotes the gH-difference between two intervals
(see [17, 18]).

3 A linear ordering on the space of fuzzy intervals

During the study of the different methods for ranking fuzzy intervals, most of the au-
thors suggest mapping each fuzzy interval into the real line to define a ranking function
(see for instance [6, 7, 19]). In [6] a ranking function called the Average Value (A.V.)
was introduced. The A.V. was defined as dependent on several parameters, allowing
flexibility in the final classification. The following definition of ranking function, intro-
duced by Tsumura et al in [19], is a particular case of A.V. considering a mean optimism
degree. For more details see [4, 6].

Definition 3. Let τ : FC → R be a function defined by

τ(u) =

∫ 1

0
α
[
u(α) + u(α)

]
dα, (1)

for all fuzzy interval u ∈ FC . Then the function τ is called ranking value function.
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In this case τ(u) represents a mean value of the different α-levels positions. In fact, the
τ(u) represent a mean value of the fuzzy interval u. For more details see [4, 8, 10].

Remark 1. In the relation (1) we are considering the Lebesgue integral.

From ranking value function τ, we consider the following order relation, �, on FC

which was exhaustively studied by many authors [8, 9, 12, 15, 16, 20].

Definition 4. Suppose that u and v are two fuzzy intervals. Then u precedes v (u � v) if
and only if τ(u) ≤ τ(v).

And u strictly precedes v (u ≺ v) if [15, 16]

u � v, and τ(u) , τ(v).

Note that the order relation � is reflexive and transitive. Moreover, any two elements of
FC are comparable under the ordering �. For more details see [8, 9, 15, 16]

As consequence of Definition 3 and 4 we have the following.

Lemma 1. For u, v ∈ FC ,
(a) u � v⇔ τ(u) ≤ τ(v);
(b) u ≺ v⇔ τ(u) < τ(v);
(c) if u � v and v � u, then τ(u) = τ(v).

4 Differentiable fuzzy mappings

Henceforth, K denotes an open subset of Rn an let T = (a, b) be an open interval in R.
A mapping F : K → FC is said to be a fuzzy mapping. For each α[0, 1], associated

to F, we define the family of interval-valued functions Fα : K → KC given by Fα(x) =

[F(x)]α. For any α[0, 1], we denote

Fα(x) = [ fα(x), f α(x)].

Here, for each α ∈ [0, 1], the endpoint functions fα, f α : K → R are called lower and
upper functions of F, respectively.

Next we present the concept of gH-differentiable fuzzy mappings in the one dimen-
sional case.[1]

Definition 5. ([3]) Let K ⊂ R with F : K → FC a fuzzy function and x0 ∈ K and h
be such that x0 + h ∈ K. Then the generalized Hukuhara derivative (gH-derivative, for
short) of F at x0 is defined as

F′(x0) = lim
h→0

F(x0 + h) 	gH F(x0)
h

. (2)

If F′(x0) ∈ FC satisfying (2) exists, we say that F is generalized Hukuhara differentiable
(gH-differentiable, for short) at x0.
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The gH-derivative for an interval-valued function [18] is similar to Definition 5.
More precisely, an interval-valued function F : K → KC is gH-differentiable at x0 ∈ K,
with gH-derivative F

′
(x0) ∈ KC , if (2) exists with respect to the limit in the metric space

(KC ,H) where the difference is given by the gH-difference between intervals (see [18]).

Theorem 1. Let F : K → FC be a fuzzy function. If F is gH-differentiable then the
interval-valued function Fα : K → KC is gH-differentiable for each α ∈ [0, 1]. More-
over [

F′(x)
]α

= F′α(x). (3)

Proof. The proof is a consequence of the definition of gH-differentiability. �

Motivated by Goetschel and Voxman [9], in [5] is given the following definition

Definition 6. For each fuzzy mapping F : K → FC , the ranking function TF : K → R
associated to F is defined by

TF(x) =

∫ 1

0
α
[
f (α, x), f (α, x)

]

Note that the real-valued function TF can be rewritten as being TF(x) = τ(F(x)).
The following results shows the connection between the continuity and gH-differentiability

of a fuzzy mapping F and the continuity and differentiability of the ranking function
TF , respectively.[5]

Proposition 1. (Syau and Stanley Lee[15]). If F : K → FC is continuous, then TF :
K → R is also continuous.

Now we show the connection between the gH-differentiability of F and differentia-
bility of the ranking function TF .

Theorem 2. Let K ⊂ Rn be an open set. If F : K → FC
C is gH-differentiable and α 7→(

∂
(

f + f
)
/∂xi

)
(α, x) is continuous, for each i = 1, ..., n and x ∈ K, then TF : K → R is

differentiable.

5 Generalized convexity and optimality conditions in fuzzy
optimization

In [15, 16, 20] were introduced some concepts of convexity and generalized convexity
for fuzzy mappings based on the ranking valued function τ : FC → R, introduced in the
preceding Section. In what follows, let η : K × K → Rn, and let K ⊂ Rn be a nonempty
invex set w.r.t. to η.

From the definitions of convex, preinvex and prequasiinvex of a fuzzy mapping
F : K → FC given in [15, 16, 20], it is shown that the concept of convexity of F is
linked to the convexity of TF . More precisely from [5], we have the following result.

Theorem 3. Let F : K → FC be a fuzzy mapping. Then, F is convex (preinvex, pre-
quasiinvex) if and only if TF is convex (preinvex, prequasiinvex) respectively.
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Inspired by Theorem 3, in [5] it is proposed the following definition.

Definition 7. Let F : K → FC be a fuzzy mapping such that TF is differentiable. Then,
F is said to be invex if TF is an invex function, i.e. for x, y ∈ K

TF(x) − TF(y) ≥ ∇TF(y)η(x, y)

In addition, Y. Chalco-Cano et al. [5] give the following definition of stationary
point.

Definition 8. We say that x∗ ∈ K is a stationary point for a G-differentiable fuzzy
mapping F : K → FC if ∇TF(x∗) = 0.

These concepts of generalized convexity given were used in [14–16,20] to establish
diverse results on fuzzy optimization. In [5] it is presented the following definition on
fuzzy optimization.

Theorem 4. Let F : K → R be a fuzzy mapping. Then F is invex if and only if every
stationary point is a minimum point of F.

The recently published article [1], shows us how to extend the ranking function to
multiobjective problem. In fact they focus their attention on the following vector fuzzy
optimization problem

(VFP) Minimize F(x) = (F1(x), . . . , Fp(x))
subject to: x ∈ K

where K ⊆ Rn is an nonempty open set, and F : K ⊆ Rn → (FC)p a vector fuzzy
mapping. K is said to be the feasible set.

In the particular case p = 1, we have described an order relation, �, on FC , in-
troduced in [9], and associated to a ranking value function τ by Definition 4 (see also
[15, 16, 20]).

Theorem 5. Let F : K → R be a fuzzy mapping. Then, F is invex if and only if every
stationary point is a minimum point of F.

As an extension of this order relation to vector fuzzy sets, Arana et al.[1] have
proposed the partial order relations given by ≺, � and �, on (FC)p. These new relations
allow them to define some concepts of optimal solutions, based on efficiency, as well as
to study new necessary and sufficient optimality conditions for (VFP). Again, we have
a necessary optimality conditions defined in terms of stationary point for the vectorial
case as an extension of that given for the scalar case, when p > 1.

Arana et al. proved in [1] that pseudoconvexity-I is the minimal condition for a
stationary point of F to be a weakly efficient solution for the vector fuzzy mapping.

Theorem 6. Every stationary point of F is a weakly efficient solution of (VFP) if and
only if F is pseudoinvex-I.

Finally, they established a similar result for efficient solutions for (VFP).

Theorem 7. Every stationary point of F is an efficient solution of (VFP) if and only if
F is pseudoinvex-II.

Thus, we can state that pseudoinvexity-I and II are not only sufficient conditions, but
the minimal, to obtain weakly efficient and efficient solutions from stationary points.
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6 Conclusions

A proper linear ordering on the space of fuzzy intervals is very useful to obtain efficient
and weakly efficient solutions of a fuzzy optimization problem. Y. Chalco-Cano et al.[5]
present the ranking value function τ and the concepts of generalized convexity, which
derive on results on fuzzy optimization based on invexity. Arana et al.[1] extend these
results to multiobjective fuzzy problem with pseudoinvexity.
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Extended abstract

Owen[12] considered linear production programming problems in which multiple decision-makers

pool resources to make several products and analyzed these situations by using cooperative game

theory. Recently, Lozano[7] has generalized the model to the more general framework of DEA

production problems.

In these models the technology is assumed to be implicit in the input-output data given by

a set of recorded observations. The objective function represents the total revenue obtained

from selling certain kinds of products, and the problem is formulated as a linear programming

problem in which the revenue is maximized in the production possibility set induced by the set

of recorded observations.

However, very often, in real world-situations, the assumption of certainty with respect to the

nature of the parameters is unrealistic and in many applications, the use of fuzzy logic[14] has

proved to be advantageous to deal with the imprecise nature of the data involved. Particularly,

in the analysis of efficiency by using DEA models, imprecision in the data is a main drawback

and their representation as fuzzy numbers enables a more realistic assessment of the efficiency

of the decision making units (see for instance, Lertworasirikul et al.[6], Hatami-Marbini et al.[4],

and Lozano[9].
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In this paper we address the cooperative model arising from DEA production problems with

uncertain parameters. The introduction of uncertainty into the cooperative model raises new

and interesting issues, since coalitions can form prior to the resolution of uncertainty and they

must discuss divisions of the uncertain revenue by taking into account their potential worths

which may also be uncertain. We assume that the lack of precision in the parameters of the

linear production problem is modeled via fuzzy logic, that is, some of the parameters involved

in the objective function and/or in the constraints of the production game are represented by

fuzzy numbers.

Several cooperative models involving fuzzyness can be found in the literature. The present

investigation deals with models in which the fuzziness concerns the values that the coalitions

can achieve. Niszhizaki and Sakawa[11] precede us in investigating solutions for these games.

They addressed the special case of fuzzy cooperative games arising from linear production pro-

gramming problems with fuzzy parameters for which they proposed an infinite family of cores,

each of which consists of a set of non-fuzzy payoff vectors. Recently, in Hinojosa et al.[5] and in

Monroy et al.[10], a different approach has been presented to analyse the solutions of cooperative

games with fuzzy payoffs and applied to the cases of fuzzy linear production games and fuzzy

assignment games.

On the other hand, Lozano et al.[8] have investigated vector-valued DEA production games

and their results serve as a basis for the analysis in a fuzzy environment which is developed in

this paper.

As a first step to analyze the problem in a fuzzy environment, a partial order has to be

considered in the set of fuzzy numbers. Hence, the concept of maximization of fuzzy objective

functions on a feasible set must be understood as the search for the maximal elements with

respect to this partial order. As a consequence, the game arising from the production situation,

when the pool of resources is controlled by several agents, is a set-valued game in which each

element of the set is a fuzzy number. In this situation, since there is not a total order among the

payoffs, the comparisons between the payoffs obtained by the players and by the coalitions are

not straightforward as in scalar games and, therefore, classic solution concepts are not applicable.

Previous literature has addressed this difficulty by establishing a utility function in order to

induce a scalar game and to obtain allocations of the associated total revenue based on different

solution concepts. However, this approach seldom helps towards an accurate analysis of the

situation, since the results are non-fuzzy payoffs.

2
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This paper carries out an ex-ante analysis of the production situation and proposes a solution

for the DEA production game with fuzzy prices, namely the preference least core, which is

applicable before the fuzziness is resolved. In this solution the fuzzy nature of the allocations

is preserved, and therefore, the quantity finally assigned to each agent is a fuzzy number. The

preference least core has recently been introduced in [8] for set-valued DEA production games,

and is based on the same idea as the least core in standard TU games. Its main drawback in the

fuzzy environment is the difficulty involved in the effective computation of the fuzzy allocations.

We adopt standard fuzzy orders in the set of fuzzy numbers (see González and Vila [2], [3],

and Ramı́k and R̆ı́mánek [13]), and define the excess of the coalitions accordingly. For DEA

production games the fuzzy allocations in the preference least core allocate the revenue obtained

with one of the efficient production vectors which minimize the excess of the coalitions. The

main contribution in the paper is the proposal of a procedure to compute allocations in the

preference least core. The procedure requires solving a single linear programming model, which

at the same time yields the efficient fuzzy revenue obtained by cooperation and the allocation

to the agents of this fuzzy quantity.

We also show how our approach is applied in a case study, for which allocations in the

preference least core are obtained, both for the case where uncertain prices are represented

by triangular fuzzy numbers and trapezoidal fuzzy numbers. Specifically the data are a fuzzy

version of those in Färe and Zelenyuk [1]. The example shows how the level of ambiguity of

the fuzzy numbers which represent per-unit profits affects the precision of the fuzzy quantities

which are finally allocated to the agents.
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Abstract. Nowadays, the interest about extracting knowledge from
databases has increased in a wide variety of areas like stock market,
medicine or census data, to name a few. Fuzzy Formal Concept Analysis
plays a crucial role in the characterization in the sets of objects related
to different sets of attributes. A compact representation of this is pro-
vided by the rule base, composed by fully and partially true implications
between attributes. This paper shows the way to obtain the base of rules
given a fuzzy formal context.

Keywords: Fuzzy rule, Fuzzy Formal Concept Analysis, Fuzzy set

1 Introduction

Extracting knowledge from databases is a critical technique in a wide variety
of areas like stock market prediction [9], disease diagnosis [8] or census data
analysis [4], among others. The knowledge extracted is usually represented as a
set of rules which summarizes completely the information stored in the database.
These rules are usually extracted via APRIORI algorithm [2], which exploits
frequent itemsets to select the most frequent and condifent rules of the database.

Formal Concept Analysis (FCA) [5] is a technique which helps to discover
relations between sets of attributes and objects inside a database, known as
concepts. FCA fixes well to retrieve the main concepts that a database has, and
that can be useful to obtain a rules set. In the classical FCA [2], only boolean
attributes are considered, leading to a set of rules which consider attributes
fully true or false. This approach may not be the most accurate in contexts
where uncertainty and noise are present.

The main goal of this paper is to use the concept of fuzzy rule (that is a rule
with attributes that might not be fully true or false) for defining the concept
of fuzzy rule base as a minimum set of rules needed to summarize the whole
information present in a database. For this, Fuzzy FCA [7] is used.

2 Preliminaries

In this section, we will present the required preliminary definitions. In all the
definitions a complete lattice (L,�) and a finite universe U are considered.
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2 Towards generating fuzzy rules via Fuzzy Formal Concept Analysis

Definition 1. A spanning tree S of a connected graph 〈V,E〉 is a subset of E
which interconnects all elements in V .

Definition 2 ([10]). Given a fuzzy set f : U → L, the fuzzy cardinality of f
defined as card(f) =

∑
i∈U f(i) is called sigma count.

2.1 Fuzzy Formal Concept Analysis

In this subsection the main definitions regarding Fuzzy Formal Concept Analysis
(FFCA) will be covered.

The first definition introduce the basic operators will be consider throughout
the paper.

Definition 3. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if:

Adjoint property : x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

where x ∈ P1, y ∈ P2 and z ∈ P3.

In the FFCA environment, the posets (P1,≤1) and (P2,≤2) considered in the
previous definition are actually complete lattices [7] and they will be denoted as
(L1,�1) and (L2,�2). Now a definition of multi-adjoint frame is presented.

Definition 4. A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and (&i,↙i

,↖i) is an adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.

Now the concept of context is presented.

Definition 5. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context
is a tuple (A,B,R, σ) such that A and B are non-empty sets (interpreted as
attributes and objects, respectively), R is a P -fuzzy relation R : A×B → P and
σ : A×B → {1, . . . , n} is a mapping which associates any element in A×B with
a particular adjoint triple in the frame.

LB2 and LA1 denote the set of fuzzy subsets g : B → L2, f : A→ L1 respectively.
On these sets a pointwise partial order can be considered from the partial orders
in (L1,�1) and (L2,�2), which provides LB2 and LA1 the structure of complete
lattice. Given a multi-adjoint frame and a context, the concept-forming operators
we will use ↑ : LB2 → LA1 and ↓ : LA1 → LB2 will be defined as:

g↑(a) = inf{R(a, b)↙σ(a,b) g(b) | b ∈ B}
f↓(b) = inf{R(a, b)↖σ(a,b) f(a) | a ∈ A}
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Towards generating fuzzy rules via Fuzzy Formal Concept Analysis 3

for all g ∈ LB2 , f ∈ LA1 , a ∈ A, b ∈ B. These two operators form a Galois
connection [7]. The notion of concept can be defined as usual: A multi-adjoint
concept is a pair 〈g, f〉 satisfying that g ∈ LB2 , f ∈ LA1 and g↑ = f , f↓ = g, with
(↑, ↓) being the Galois connection defined above. The fuzzy subsets g and f in a
concept are usually known as the extent and intent of the concept, respectively.

Definition 6. The multi-adjoint concept lattice associated with a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f↓ = g}
in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 � g2
(f2 � f1). This ordering provides M the structure of complete lattice [7].

3 Multi-adjoint rule base

From now on, a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a context
(A,B,R, σ) will be fixed. First, the definition of support, a key measure of a
fuzzy rule, is introduced.

Definition 7. The support of f ∈ LA1 in (A,B,R, σ) is defined as supp(f) =
card(f↓)
|B| . This measure indicates the proportion of objects which are related to a

given fuzzy subset of attributes.

Once defined the support, in the following definition we can provide the fuzzy
rule own one.

Definition 8. Given two fuzzy subsets of attributes f1, f2 ∈ LA1 , the fuzzy rule
over A from f1 to f2 is given by the expression f2 ←(s,c) f1, s = supp(f1) and

c is defined by c = supp(f1∪f2)
supp(f1)

, called the confidence of the rule, that is the

proportion in which the rule is true. If the confidence is 1, the fuzzy rule is called
fuzzy implication, which is denotated as f2 ⇐ f1.

3.1 Fuzzy rules base

Given a context, the set of fuzzy rules computed may be huge and it also may
include redundant and not interesting rules for the purpose they are being ob-
tained. In order to fix that, a base of rules is computed.

Definition 9 ([3]). A set of fuzzy rules T is a minimal base if the following
properties hold:

– Completeness. Any rule f2 ←(s,c) f1 /∈ T can be derived by the rules in T .
– Non-redundancy. No rule f2 ←(s,c) f1 ∈ T can be derived by the rest of rules

in T .

A minimal base of fuzzy rules T is formed by two special subsets, depending on
the confidence threshold considered: the set of fuzzy rules with confidence c = 1
is called fuzzy implication base and, if c < 1, the obtained set is called fuzzy
partial implication base.
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4 Towards generating fuzzy rules via Fuzzy Formal Concept Analysis

3.2 Fuzzy partial implication base

A fuzzy implication base contains all the fuzzy rules that have the greater con-
fidence value (c = 1), however considering partial implication is also interesting
since some noise in the data can be mitigated and outlier data are also con-
sidered. This section defines in the multi-adjoint concept lattice framework a
partial implication base extending the classical case [6] and relates this base to
the given multi-adjoint concept lattice.

First of all the notion of multi-adjoint partial implication is introduced.

Definition 10. Given the set of all intents in the context Int(A,B,R, σ) = {f ∈
LA1 | f = f↓↑}, the fuzzy rule f2 ←(s,c) f1, in which the fuzzy subset of attributes
are intents, that is f1, f2 ∈ Int(A,B,R, σ), and f1 ≺ f2 is called fuzzy partial
implication.

The following result shows how new multi-adjoint partial implication can be
derived from a base via transitivity. Based on the idea given in [6], the following
result is obtained.

Theorem 1. Let f1, f2, f3 ∈ Int(A,B,R, σ), where f1 ≺ f2 ≺ f3, and the rules
f2 ←(s,c) f1, f3 ←(s′,c′) f2, f3 ←(s,c′′) f1, we have that c · c′ = c′′.

As a consequence, given f1, f2, f3 ∈ Int(A,B,R, σ), satisfying f1 ≺ f2 ≺ f3,
and the partial implications f2 ←(s,c) f1 and f3 ←(s′,c′) f2 the implication
f3 ←(s,c′′) f1 can be straightforwardly derived considering c′′ = c · c′.

This result provides that only the rules between neighbor intents are con-
sidered in a fuzzy partial implication base and gives us a mechanism in order
to compute a fuzzy partial implication base, only considering a minimal subset
of relations between neighbor intents removing cycles in the concept lattice, in
other words, obtaining a spanning tree of the Hasse diagram of the concept lat-
tice. If we need to compute the confidence of a new rule, we just need to identify
the path followed in the spanning tree and then multiply the confidences of the
rules involved, inverting the value in the rules we consider in the reverse form.
Example 1 will show how to derive new partial implications using this method.

Example 1. Given a spanning tree S of a concept latticeM formed by the partial
implications {f2 ←(0.5,0.4) f1, f3 ←(0.4,0.3) f1, f4 ←(0.2,0.25) f2}, the derived
partial implication f4 ←(s,c) f3 can be obtained transiting in the spanning tree
in this form: {f1 ← f3, f2 ← f1, f4 ← f2}.

The support of the derived rule is trivially supp(f3) and the confidence is
1
0.3 · 0.4 · 0.25 = 0.33.

3.3 Computing the whole multi-adjoint rules base

It has been shown how a fuzzy partial implication base can be obtained from
a context given. However, that base is only one component of the whole multi-
adjoint rules base. In order to compute the multi-adjoint rules base, it is needed
to obtain additionally the implication base. The process can be summarized in
the following points:
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1. Computing a fuzzy implication base from the context (see [3] for a whole
explanation of the process).

2. Obtaining a spanning tree of the concept lattice associated with the context,
as shown in the previous subsection.

Now, an example of computing the fuzzy partial implication base of a context
is provided.

Example 2. Let (L,�,&G) be a multi-adjoint frame, where &G is the Gödel
conjunctor with respect to L = {0, 0.25, 0.5, 0.75, 1}. The context (A,B,R, σ)
is formed by the sets A = {a1, a2, a3} and B = {b1, b2}, the relation R defined
from Table 1 and the constant mapping σ. For each a ∈ A, the expression a/1
will simply be written as a and a/0 will be omitted. Figure 1 shows the concept

R a1 a2 a3

b1 0.5 0.25 1.0
b2 1.0 0.5 0.75

Table 1: Relation R of example 2

lattice associated with the context given. The fuzzy rules computed from the
concept lattice are marked in red. As we can see, the red arrows form a spanning
tree of the Hasse diagram of the concept lattice. The computed fuzzy partial
implication base is shown in figure 2.

Fig. 1: Concept lattice associated with
the context

{a1} ←(0.75,0.75) {a1/0.5, a2/0.25, a3/0.75}
{a3} ←(0.88,0.88) {a1/0.5, a2/0.25, a3/0.75}

{a2/0.5} ←(0.62,0.83) {a1, a2/0.25, a3/0.75}
{a3} ←(0.62,0.83) {a1, a2/0.25, a3/0.75}
{a3} ←(0.5,0.8) {a1, a2/0.5, a3/0.75}
{a2} ←(0.38,0.75) {a1, a2/0.5, a3}

Fig. 2: Fuzzy partial implication base

4 Conclusions and future work

In this paper FFCA has been utilized to provide an approximation of generating
fuzzy rules of a database. First, fuzzy rules have been defined. With this defi-
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6 Towards generating fuzzy rules via Fuzzy Formal Concept Analysis

nition, a fuzzy rules base has been characterized. Depending of the confidence
threshold, two bases of rules compose the whole fuzzy rules base: fuzzy implica-
tion base (c = 1) and fuzzy partial implication base (c < 1). These properties
help to obtain a strategy to generate both of them, as shown in the example
given.

From now on a set of future work lines will be presented. First, it is critical
to show the performance and the potential, in terms of information retrieved, of
the procedure of generation, an experimental study is needed. There are another
approaches in terms of rules bases, such the D-Basis [1]. This approach makes the
consequents shorter and allows to compute a base in which an specific attribute
is previously settled in the consequent, which may be a potential advantage to
apply fuzzy rules in a regression scenario.
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Abstract. Adjoint negations, whose definition is based on the implica-
tions of an adjoint triple, arise as a generalization of residuated negations.
Recently, interesting properties of these negation operators have been in-
troduced [5]. In this paper, a comparative survey with weak negations
studied by Trillas, Esteva and Domingo [10, 13] is presented. Moreover,
the relationship between weak and strong negations, introduced by these
authors, is extended to adjoint negations. These technical developments
lead us to increase the number of applications of adjoint negations.

Key words: residuated negations; weak and strong negations; adjoint
triples.

1 Introduction

Negation operators play an important role in several frameworks and they have
widely been studied in [8, 10, 20]. From residuated implications of a t-norm [4, 12,
19], it is defined the residuated negation defined from the residuated implication
as ¬x = x→ 0. In addition, weak negations are one of the most general negation
operators, which have heavily been studied by Trillas, Esteva and Domingo [10,
11, 13, 20]. In this paper, we will work with adjoint triples in order to consider
more general negation operators.

Adjoint triples were firstly considered in [15, 18] taking into account the ad-
joint conjunctor and only one implication. They have been used as basic oper-
ators in Logic Programming [17], general substructural logics [3], Fuzzy Formal
Concept Analysis [16], Fuzzy Relation Equations [9] and Rough Set Theory [7],
providing more flexibility and increasing the range of applications.

From the implications of an adjoint triple, we define the generalization of the
residuated negation which are called adjoint negations. Since they are associated
with an adjoint triple with respect to three different posets, these negation op-
erators are defined on two different posets. Dealing with this general structure
is helpful in the applications as it has been highlighted in [1, 2, 9].
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In this paper, we will compare adjoint negations with weak negations and we
will show that adjoint negations are more general. Besides, a bijection between
adjoint negations and strong adjoint negations will be presented, following the
idea introduced by Trillas, Esteva and Domingo in [10, 13], in order to establish
the relationship between adjoint negations and strong adjoint negations.

2 Adjoint negations and weak negations

Adjoint triples, which generalize triangular norms and their residuated implica-
tions [14], are considered to decrease the mathematical requirements of the basic
operators used in several frameworks. In this paper, adjoint triples will be used
in order to define adjoint negations. For that reason, we will start introducing
the notion of adjoint triple.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3. The condition (1) is called adjoint property.

If adjoint triples are used in environments that require finiteness such as Fuzzy
Formal Concept Analysis to obtain a finite concept lattice [6, 16] and Fuzzy
Relation Equations to guarantee the existence of minimal solutions [9], then it
is important that adjoint triples are defined on regular partitions of the unit
interval [0, 1].

Example 1. Given m ∈ N, the set [0, 1]m is a regular partition of [0, 1] in m
pieces, for example [0, 1]2 = {0, 0.5, 1} divides the unit interval into two pieces.

A discretization of the  Lukasiewicz t-norm is the operator &∗L : [0, 1]20 ×
[0, 1]8 → [0, 1]100 defined, for each x ∈ [0, 1]20 and y ∈ [0, 1]8 as:

x&
∗
L y =

d100 ·max(0, x+ y − 1)e
100

whose residuated implications ↙∗L : [0, 1]100 × [0, 1]8 → [0, 1]20, ↖∗L : [0, 1]100 ×
[0, 1]20 → [0, 1]8 are defined as:

z ↙∗L y =
b20 ·min{1, 1− y + z}c

20
z ↖∗L x =

b8 ·min{1, 1− x+ z}c
8

where d e and b c are the ceiling and the floor functions, respectively. Hence,
the triple (&∗L,↙∗L,↖∗L) is an adjoint triple. ut

Now, we recall the definition of adjoint negations which is given from the
implications of an adjoint triple and generalize the notion of residuated nega-
tion [4, 12, 19]. Adjoint negations are defined on two different posets since they
are associated with an adjoint triple with respect to three different posets.
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Definition 2. Let (P1,≤1) and (P2,≤2) be two posets, (P3,≤3,⊥3) be a lower
bounded poset and (&,↙,↖) an adjoint triple with respect to P1, P2 and P3.
The mappings nn : P1 → P2 and ns : P2 → P1 defined, for all x ∈ P1, y ∈ P2 as

nn(x) = ⊥3 ↖ x ns(y) = ⊥3 ↙ y

are called adjoint negations with respect to P1 and P2.
The operators ns and nn satisfying that x = ns(nn(x)) and y = nn(ns(y)),

for all x ∈ P1 and y ∈ P2, are called strong adjoint negations.

Considering the adjoint triple (&∗L,↙∗L,↖∗L) presented in Example 1, we
introduce the next example of adjoint negations.

Example 2. The adjoint negations ns : [0, 1]8 → [0, 1]20 and nn : [0, 1]20 → [0, 1]8
obtained from the adjoint triple (&∗L,↙∗L,↖∗L) are defined as:

ns(y) =
b20 · (1− y)c

20
nn(x) =

b8 · (1− x)c
8

Observe that the choice of the posets is fundamental. If the adjoint conjunctor
is defined as &∗L : [0, 1]k × [0, 1]t → [0, 1]p, the corresponding adjoint negations
will be ns : [0, 1]t → [0, 1]k and nn : [0, 1]k → [0, 1]t. Therefore,

(i) If t = k, then it is easy to verify that ns and nn are strong adjoint negations.
(ii) If t 6= k, the obtained adjoint negations are not strong adjoint negations, in

general. ut
One of the most general negation operators are weak negations, which have

widely been studied by Trillas and Esteva et al [10, 11, 13, 20]. In order to com-
pare adjoint negations with weak negations, we will remind the next definition.

Definition 3 ([20]). Given a mapping n : [0, 1] → [0, 1] is said to be a weak
negation if the following conditions hold, for all x, y ∈ [0, 1].

1. n(1) = 0;
2. if x ≤ y then n(y) ≤ n(x);
3. x ≤ n(n(x)).

We will say that n is a strong negation if the equality x = n(n(x)) holds, for all
x ∈ [0, 1].

The next theorem shows that adjoint negations are a generalization of weak
negations.

Theorem 1. If the mapping n : [0, 1] → [0, 1] is a weak negation, then there
exists an adjoint triple (&,↙,↖) with respect to the poset ([0, 1],≤) satisfying
n = ns = nn.

Once we have presented this result, we will study if the relation between
weak and strong negations defined on a complete lattice studied in [10] can be
extended to adjoint negations. This relationship ensures that weak negations can
be defined uniquely from strong negations.
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3 Relation between adjoint negations and strong adjoint
negations

In this section, we will introduce the main result of this paper which proves
that there exists an one to one correspondence between adjoint negations de-
fined on two posets and strong adjoint negations defined on two complete meet-
semilattices.

For that purpose, we will consider two posets (P,≤P ), (Q,≤Q) and two
complete meet-semilattices (P ′,�P ′), (Q′,�Q′) with maximum elements >P ′

and >Q′ , respectively, such that P ′ ⊆ P and Q′ ⊆ Q. From now on, the set
of pair of adjoint negations (ns, nn) with respect to P and Q satisfying that
ns(P ) = Q′ and nn(Q) = P ′, will be denoted as N(P ′,Q′)(P,Q) and the set
of pairs of strong adjoint negations (n′s, n

′
n) with respect to P ′ and Q′ will be

denoted as SN(P ′, Q′).
A bijection between N(P ′,Q′)(P,Q) and SN(P ′, Q′) is obtained, as the fol-

lowing theorem shows.

Theorem 2. There exists an one to one correspondence between N(P ′,Q′)(P,Q)
and SN(P ′, Q′).

As a consequence, the next corollary is straighforwardly obtained.

Corollary 1. Given a pair of strong adjoint negations (n′s, n
′
n) with respect to

P ′ and Q′, there exists a pair of adjoint negations (ns, nn) with respect to P and
Q defined as:

ns(p) = n′s(zp) with zp =
∧

P ′{y ∈ P ′ | p ≤ y}
nn(q) = n′n(zq) with zq =

∧
Q′{x ∈ Q′ | q ≤ x}

such that ns|P ′ = n′s, nn|Q′ = n′n, and ns(P ) = Q′, nn(Q) = P ′.

There exist cases in which we can define only one pair of strong adjoint
negations with respect to P ′ and Q′. Then, applying the previous theorem and
corollary, only one pair of adjoint negations can be defined with respect to P
and Q, as the following examples shows:

Example 3. Given P ′ = {p′,>P ′} and Q′ = {q′,>Q′}. The unique pair of strong
adjoint negations (n′s, n

′
n) with respect to (P ′,�P ′) and (Q′,�Q′), is defined

as n′s(p
′) = >Q′ , n′s(>P ′) = q′ and n′n(q′) = >P ′ , n′n(>Q′) = p′. Then, there

exists only one pair of adjoint negations (ns, nn) with respect to P and Q, being
(P,≤P ) and (Q,≤Q) two posets with maximum elements >P ∈ P and >Q ∈ Q,
such that ns(P ) = Q′ and nn(Q) = P ′. By Corollary 1, ns and nn are defined
as follows:

ns(p) =

{
>Q′ if p ≤P p′

q′ otherwise
nn(q) =

{
>P ′ if q ≤Q q′

p′ otherwise

for all p ∈ P and q ∈ Q.
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Example 4. Let (P ′ = {a, b, c},�P ′) and (Q′ = {x, y, z},�Q′) two complete
meet-semilattices such that a �P ′ b �P ′ c and x �Q′ y �Q′ z. The pair (n′s, n

′
n),

defined as n′s(a) = z, n′s(b) = y, n′s(c) = x and n′n(x) = c, n′n(y) = b, n′n(z) = a,
is the unique pair of strong adjoint negations (n′s, n

′
n) with respect to P ′ and Q′.

Therefore, applying Theorem 2, there exists only one pair of adjoint negations
(ns, nn) with respect to P and Q, the posets given in Figure 1, such that ns(P ) =
Q′ and nn(Q) = P ′. By Corollary 1, ns and nn are defined as follows:

ns(p) =





z if p = a

y if p ∈ {b, d}
x if p = c

nn(q) =





c if q = x

b if q = y

a if q = z

•a • d�
�
�

@
@
@
• b

•c

•x

•y

•z

Fig. 1. The posets (P,≤P ) (left side) and (Q,≤Q) (right side) of Example 4

4 Conclusions and further work

We have shown that adjoint negations are more general than weak negations
studied by Trillas, Esteva and Domingo [10, 11, 13, 20]. Specifically, we have
proven that every weak negation can be obtained from the implications of an
adjoint triple. Moreover, an interesting generalization of the relation between
weak and strong negations defined on a complete lattice studied in [10] has been
presented. In this paper, a bijection between adjoint negations defined on two
posets and strong adjoint negations defined on two complete meet-semilattices
is shown.

As a further work, we will continue studying more properties of adjoint nega-
tions and possible applications of these operators. In addition, we will study the
existence of an algorithm capable of computing the number of strong adjoint
negations which can be defined on two complete meet-semilattices.
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Some New Bivariate and Multivariate
Dependence Measures
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Abstract. Risk analysts, to build or hedge their portfolios, often have
to decide among different assets, which is the best option to used. Then,
they should evaluate the risk exposure of the new portfolio. In this paper
we consider the important circumstances involved when the risk analysts
are concerned with risks that exceed a certain threshold. Such conditions
are well known to financial and insurance professionals, for instance in the
context of hedging some asset or to extend his portfolio emphasizing the
risk to exceed that threshold. In this framework, dependence measures
are useful to make decisions and measure the dependence structure of
the vectors under risk uncertainty. We propose new dependence measures
for bivariant and multivariant random vectors. We study their bounds
and properties. We also investigate the circumstances under which the
existence of some stochastic orderings among their marginals, or some
orderings among their dependence structure, imply an ordering among
the corresponding conditional risk distributions.

1 Introduction

Random vectors can be used to describe financial and insurance portfolios. The
risk analyst, to build or hedge his portfolio, often has to decide among differents
assets which is the best option to use. Then, the risk analyst should evaluate
the risk exposure to the new portfolio. Consider a portfolio X and differents
assets Y1, . . . , Yn. To determine the distribution of the new portfolio (X,Yi),
i = 1, . . . , n, we have to know the joint distribution H of (X,Yi). In practice
however this often turns out to be very difficult. Anyway, in the joint distribution
H, it is important the role that takes the marginal components and the role
that takes the dependence structure (copula function). One way to simplify
this problem is to simply neglect the dependence and assume that the risks are
independent. Let (X,Yi) be a random vector with independent components, then
(X,Yi) has cumulative distribution

Hi(x, yi) = F (x) Gi(yi).

Obviously, neglecting the dependence, we might underrate or overrate the risk
of portfolio. Alternatively, one might consider the strongest positive dependence
and assume that the risks are comonotonic. Let (X,Yi) be a random vector
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with comonotonic components and let F and Gi be the corresponding marginal
distribution functions, then (X,Yi) has cumulative distribution

Hi(x, yi) = min {F (x), Gi(yi)} .

In this case, we will likely be overrated the risk of portfolio.

Since the above approaches could be too restrictive assumptions, the depen-
dence structure between the marginal components takes greater role. So, using
dependence measures that consider the dependence structure and the behavior
of marginal components prove to be useful. In this paper we introduce a bivariate
and multivariate dependence measure that takes both aspects into account, and
takes both extreme simplifications. These new measures differ from other mul-
tivariate dependence measures in e.g. Wolff (1980), Fernández Fernández and
González-Barrios (2004), Taylor (2007), Behboodian et al. (2007), Schmid and
Schmidt (2007), Koch and De Schepper (2011), Dhaene et al. (2013) or Cousin
et al. (2014), as it focusses on the risk X conditioning to Yi, when Yi exceeds
its p−quantile, rather than on the joint distribution function of X. In a finance
context, this can be translated into a way for making decisions about the in-
creasing or decreasing of a portfolio.

Distortion functions are very popular in financial and actuarial research. Den-
neberg (1990) introduced the idea of distortion and Wang (1996) developed it
further. We can see in Sordo, Suarez and Bello (2014) how we can use distortion
functions to describe differents conditional random variables.

Remark: At this time, the work is still in progress.
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1 Introduction

Supremum-� fuzzy relation equations were introduced by E. Sanchez [4]. These
and other many papers study the existence of solutions of these equations [1–
3], and, in the affirmative case, they show that the set of solutions is a upper-
preserving complete lattice in which the greatest solutions can easily be obtained.
However, to know about minimal solutions is more difficult.

It is interesting to fix a general framework in which the minimal solutions of
each solvable fuzzy relation equation exist and that each solution will be between
the greatest solution and a minimal solution.

This paper considers a general setting, in which the operators may neither be
commutative nor associative and they only need to be monotone and residuated
inf-preserving mappings of non-empty sets on the right argument. The linearity
of the carrier, together with the inf-preserving property, ensures the existence of
minimal solutions whenever a solution exists.

Moreover, this paper provides a mechanism to obtain the minimal solutions.

2 General fuzzy relation equations

A complete linear lattice (L,�) is the carrier considered throughout this paper,
hence, the bottom and the top elements exist in L and are denoted as 0, 1,
respectively. Given a set V , the ordering � in the lattice induces a partial order
on the set of L-fuzzy subsets of V , LV . This ordering provides to LV the structure
of a complete lattice.
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Moreover, the general residuated operator used to define the fuzzy relation
equation is � : L × L → L, such that it is order preserving and there exists an
operator → : L× L→ L, satisfying the following adjoint property with �

x� y � z if and only if y � x→ z (1)

for each x, y, z ∈ L. Note that this property is equivalent to � preserves supre-
mums in the second argument; x � ∨{y | y ∈ Y } =

∨{x � y | y ∈ Y }, for all
Y ⊆ L. Hence, very few properties are assumed.

An important notion needed in this paper is the definition of a cover.

Definition 1. Given an ordered set (A,�) and non-empty subsets S1, . . . , Sn of
A, an element a ∈ A is a cover of {S1, . . . , Sn}, if for each i ∈ {1, . . . , n}, there
exists si ∈ Si such that si � a. A cover a ∈ A is called minimal if every element
d ∈ A satisfying d ≺ a, is not a cover of {S1, . . . , Sn}.
Note that when (A,�) is a complete lattice, minimal covers always exist in A.

Definition 2. Given the pair (�,→), a fuzzy relation equation is the equation:

R ◦X = T, (2)

where R : U × V → L, T : U ×W → L are given finite L-fuzzy relations and
X : V ×W → L is unknown; and R ◦X : U ×W → L is defined, for each u ∈ U ,
w ∈W , as

(R ◦X)〈u,w〉 =
∨
{R〈u, v〉 �X〈v, w〉 | v ∈ V }.

It is well known that the fuzzy relation equation (2) has a solution if and only if

(R⇒ T )〈v, w〉 =
∧
{R〈u, v〉 → T 〈u,w〉 | u ∈ U}

is a solution and, in that case, it is the greatest solution, see [4, 5].

3 Minimal solutions generated by a given solution

Definition 3. Given an operator � : L × L → L, we will say that it holds the
IPNE-condition (making reference to that � is Infimum Preserving of arbitrary
Non-Empty sets), if it verify

a�
∧
{bi | i ∈ Γ} =

∧
{a� bi | i ∈ Γ} (3)

for each element a ∈ L and each non-empty subset {bi | i ∈ Γ} ⊆ L.

From now on, let us consider a general solvable fuzzy relation equation (2),
where R,X, T are finite, U = {u1, . . . , un}, W = {w1, . . . , wm}, and � satisfies
the IPNE-condition.

Our first result characterizes the solutions of a solvable fuzzy relation equa-
tion R ◦X = T by the covering elements of a family of subsets Sij . Next, these
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sets are defined. First of all, the auxiliary sets Vij need to be introduced, which
are associated with the elements ui, wj and the greatest solution R⇒ T . Since
for each j = 1, . . . ,m, i = 1, . . . , n

∨
{R〈ui, v〉 � (R⇒ T )〈v, wj〉 | v ∈ V } = T 〈ui, wj〉, (4)

L is linear and V is finite, there exists at least one vs ∈ V validating the equation

R〈ui, vs〉 � (R⇒ T )〈vs, wj〉 = T 〈ui, wj〉. (5)

Therefore, the set Vij = {vs ∈ V | R〈ui, vs〉 � (R ⇒ T )〈vs, wj〉 = T 〈ui, wj〉} is
not empty and, for all v /∈ Vij , the strict inequality R〈ui, v〉� (R⇒ T )〈vs, wj〉 <
T 〈ui, wj〉 holds.

Each vs in Vij will provide a fuzzy subset Sijs as follows: Given vs ∈ Vij , we
have that

{d ∈ L | R〈ui, vs〉 � d = T 〈ui, wj〉} 6= ∅
and the infimum

∧{d ∈ L | R〈ui, vs〉 � d = T 〈ui, wj〉} = es also satisfies the
equality

R〈ui, vs〉 � es = T 〈ui, wj〉
by the IPNE-condition. These elements are used to define the fuzzy subsets
Sijs : V → L of V , defined by

Sijs(v) =

{
es if v = vs
0 otherwise

which form the set Sij , that is Sij = {Sijs | vs ∈ Vij}, for each i = 1, . . . , n,
j = 1, . . . ,m. These sets will be used to characterize the set of solutions of
Equation (2) by the notion of covering.

Theorem 1. The L-fuzzy relation X : V ×W → L is a solution of a solvable
Equation (2) if and only if X � (R ⇒ T ) and, for each j = 1, . . . ,m, the fuzzy
subset Xj : V → L, defined by Xj(v) = X〈v, wj〉, is a cover of {S1j , . . . , Snj}.

As a consequence, the minimal solutions are characterized by the minimal
covers.

Corollary 1. X : V ×W → L is a minimal solution of Equation (2) if and only
if, for each j = 1, . . . ,m, Xj : V → L, defined by Xj(v) = X〈v, wj〉, is a minimal
cover of {S1j , . . . , Snj}.

Hence, from the corollary above, minimal solutions of the fuzzy relation equa-
tion (2) are obtained from R⇒ T as follows:

Procedure to obtain minimal solutions of Equation (2)

– For each j ∈ {1, . . . ,m} (jth element wj ∈W )
• for each i ∈ {1, . . . , n} (ith element ui ∈ U)
∗ compute Vij = {vs ∈ V | R〈ui, vs〉 � (R⇒ T )〈vs, wj〉 = T 〈ui, wj〉}
∗ for each vs ∈ Vij compute es =

∧{d ∈ L | R〈ui, vs〉 � d = T 〈ui, wj〉}
∗ construct the set Sij of corresponding characteristic mappings Sijs.

• Compute the minimal cover(s) Xj of the set {S1j , . . . , Snj}.
– Define the L-fuzzy matrix X : V ×W → L as X〈v, wj〉 = Xj(v).
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Example 1

Let us assume the standard MV–algebra, that is, L = [0, 1] is the unit interval,
� : L×L→ L is the  Lukasiewicz operator defined by x�y = max{0, x+y−1} and
→ : L×L→ L its residuated implication, defined by y → z = min{1, 1− y+ z},
for all x, y, z ∈ [0, 1].

Given U = {u1, u2, u3}, V = {v1, v2, v3} W = {w1, w2, w3} and the fuzzy
relation equations, defined from the following tables

R v1 v2 v3
u1 0.9 0.5 0.9
u2 0.2 0.9 0.7
u3 0.8 0.6 0.9

and

T w1 w2 w3

u1 0.8 0.4 0.7
u2 0.6 0.7 0.3
u3 0.8 0.4 0.6

direct computation shows that the relation R⇒ T , defined from the table

R⇒ T w1 w2 w3

v1 0.9 0.5 0.8
v2 0.7 0.8 0.4
v3 0.9 0.5 0.6

is the greatest solution of Equation (2).
Given that

R〈u1, v1〉 � (R⇒ T )〈v1, w1〉 = 0.8
R〈u1, v2〉 � (R⇒ T )〈v2, w1〉 = 0.2
R〈u1, v3〉 � (R⇒ T )〈v3, w1〉 = 0.8

,

we have that V1,1 = {v1, v3} and

S1,1 = {




0.9
0
0


 ,




0
0

0.9


}.

Analogously, we have that V2,1 = {v2, v3} and

S2,1 = {




0
0.7
0


 ,




0
0

0.9


};

and V3,1 = {v3},

S3,1 = {




0
0

0.9


}

We observe that

X1 =




0
0

0.9


 = S1,1 ∩ S2,1 ∩ S3,1,
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so X1 is the only minimal cover of {S1,1, S2,1, S3,1}.
Next, we consider the second column of R ⇒ T . We can obtain that V1,2 =

{v1, v3} and

S1,2 = {




0.5
0
0


 ,




0
0

0.5


};

V2,2 = {v2} ,

S2,2 = {




0
0.8
0


};

V3,2 = {v2, v3},

S3,2 = {




0
0

0.5


 ,




0
0.8
0


}.

In this case,




0
0.8
0.5


 ,




0.5
0.8
0


 are the only minimal covers of {S1,2, S2,2, S3,2}.

Now, for the third column of R⇒ T ,

V1,3 = {v1}

S1,3 = {




0.8
0
0


};

V2,3 = {v2, v3},

S2,3 = {




0
0.4
0


 ,




0
0

0.6


};

V3,3 = {v1},

S3,3 = {




0.8
0
0


}.

In this case, there are two minimal covers of {S1,3, S2,3, S3,3}:




0.8
0.4
0


 and




0.8
0

0.6


 .
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This yields four fuzzy relations, defined as follows

X4 w1 w2 w3

v1 0 0 0.8
v2 0 0.8 0.4
v3 0.9 0.5 0

X5 w1 w2 w3

v1 0 0 0.8
v2 0 0.8 0
v3 0.9 0.5 0.6

X6 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0.4
v3 0.9 0 0

X7 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0
v3 0.9 0 0.6

that solve Equation (2). By their construction and the properties of the  Lukasiewicz
conjunctor, they are minimal solutions.

4 Conclusion and future works

The main aim of this research is to define as generally as possible an algebraic
structure that allows the existence of minimal solutions of the fuzzy relation
equations defined based on this structure. For that, a general increasing opera-
tion �, which only satisfies the adjointness property, i.e. is residuated, and sat-
isfies the IPNE-condition, has been considered to define a general fuzzy relation
equation, which has minimal solutions whenever a solution exists. Moreover, a
new algebraic characterization using the notion of covering is introduced, which
provides a method to obtain the minimal solutions and, consequently, the whole
set of solutions.

As future work, the obtained results will be applied to several problems in
fuzzy logic, such as to abduction reasoning. It is well-known that implications in
MV-algebras are infinitely distributive. A topic of future study is to characterize
all structures where implication is infinitely distributivity. Algebraic structures
that satisfy the INPE-condition are not studied much; also they will be a topic
of future research.
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Abstract. Attribute and size reductions of concept lattices are key re-
search topics in Formal Concept Analysis. This paper combines both
strategies in the multi-adjoint concept lattice framework in order to sim-
plify the information provided by the original context. For that purpose,
we apply the attribute reduction and then the size reduction by means of
an irreducible α-cut concept lattice, analyzing the obtained properties.
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1 Introduction

Formal Concept Analysis is a tool in charge of extracting pieces of information
from databases which contain a set of attributes A and a set of objects B together
with a relation between them R ⊆ A×B. These pieces of information are called
concepts and they are hierarchized in order to obtain concept lattices.

It is well known that the computational complexity to obtain concept lattices
decreases if the number of attributes is previously reduced. However, the process
of attribute reduction is difficult in the fuzzy case [6, 10]. Although one of the
main profits of the procedure presented in [6] is that the original concept lattice
is conserved, this fact can become a drawback if the obtained concept lattice is
very big and illegible. Therefore, it is also necesssary to study mechanisms for
decreasing the size of concept lattices.

As well as the use of hedges in the concept-forming operators [1, 8, 9] and the
methodology provided by granular computing [7], there exists another mecha-
nism, based on the meet-irreducible elements of the lattice and a cut value given
by the user, to reduce the size of concept lattices [3, 5]. This method provides a
sublattice of the original concept lattice, called meet-irreducible α-cut concept
lattice. Consequently, the most representative knowledge is preserved.

In this paper, we combine both reduction mechanisms. Firstly, we will carry
out the attribute reduction to obtain a concept lattice isomorphic to the original
one and then we will apply the size reduction strategy. We study the influence
of this combination on the size of the reduced concept lattices.
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2 Preliminary notions

Some preliminary necessary notions and results to understand this work are
introduced. In the concept lattice environment, we need to consider a multi-
adjoint frame (L1, L2, P,&1, . . . ,&n) where (L1,≤1) and (L2,≤2) are complete
lattices, (P,≤) a poset and (&i,↙i,↖i) is an adjoint triple for all i ∈ {1, . . . , n},
a context (A,B,R, σ) such that A and B are sets of attributes and objects,
respectively, R is a P -fuzzy relation R : A × B → P and σ is a mapping which
associates any element in A×B with some particular adjoint triple in the frame.
We write LB2 and LA1 to represent the set of mappings g : B → L2, f : A → L1,
respectively. More information about these notions can be found in [6].

In order to recall the characterization of the ∧-irreducible elements of a multi-
adjoint concept lattice (M,�), we introduce the following results [4, 6].

Definition 1. For each a ∈ A, the fuzzy subsets of attributes φa,x ∈ LA1 defined,
for all x ∈ L1, as

φa,x(a′) =

{
x if a′ = a
⊥1 if a′ 6= a

will be called fuzzy-attributes, where ⊥1 is the minimum element in L1. The set
of all fuzzy-attributes will be denoted as Φ = {φa,x | a ∈ A, x ∈ L1}.
Theorem 1 ([6]). The set of ∧-irreducible elements of M, MF (A), is formed
by the pairs 〈φ↓a,x, φ↓↑a,x〉 in M, with a ∈ A and x ∈ L1, such that

φ↓a,x 6=
∧
{φ↓ai,xi

| φai,xi
∈ Φ, φ↓a,x ≺2 φ

↓
ai,xi
}

and φ↓a,x 6= g>2
, where >2 is the maximum element in L2 and g>2

: B → L2 is
the fuzzy subset defined as g>2

(b) = >2, for all b ∈ B.

2.1 Attribute classification in multi-adjoint concept lattices

Now, several theorems will be recalled in order to classify the set of attributes
and thus a reduction in the number of attributes is obtained [6]. The first one
characterizes the absolutely necessary attributes.

Theorem 2. Given ai ∈ A, we have that ai ∈ Cf if and only if there exists
xi ∈ L1, such that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈ MF (A), satisfying that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 6=

〈φ↓aj ,xj
, φ↓↑aj ,xj

〉, for all xj ∈ L1 and aj ∈ A, with aj 6= ai.

The next result, which characterizes the relatively necessary attributes, re-
quires the use of the auxiliary sets Eai,x, where ai ∈ A and x ∈ L1, defined
as:

Eai,x = {aj ∈ A \ {ai} | there exists x′ ∈ L1, satisfying φ↓ai,x = φ↓aj ,x′}

Theorem 3. Given ai ∈ A, we have that ai ∈ Kf if and only if ai /∈ Cf
and there exists 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈MF (A) satisfying that Eai,xi

is not empty and
A \ Eai,xi

is a consistent set.
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Finally, it is shown the characterization of absolutely unnecessary attributes.

Theorem 4. Given ai ∈ A, it is absolutely unnecessary, ai ∈ If , if and only if,
for each xi ∈ L1, we have that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 6∈ MF (A), or if 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈

MF (A), then A \ Eai,xi
is not a consistent set.

2.2 Meet-irreducible α-cut concept lattice of M
Considering the characterization given by Theorem 1, we recall a procedure to
reduce the size of multi-adjoint concept lattices introduced in [5]. To apply this
mechanism, given a value α, for each attribute a, we only consider the following
set of meet-irreducible elements of (M,�):

M̂F (A)α = {〈φ↓a,x, φ↓↑a,x〉 ∈MF (A) | α �1 x}

In order to get a complete lattice, we consider the concepts of (M,�) obtained

from the infimum of elements of M̂F (A)α and the greatest element in (M,�),

that is, 〈g>, g↑>〉.
Definition 2. Given α ∈ L1, the set

M̂α = {〈g, f〉 ∈ M | g =
∧

i∈I
φ↓ai,xi

, with 〈φ↓ai,xi
, φ↓↑ai,xi

〉 ∈ M̂F (A)α}
⋃
{〈g>, g↑>〉}

is called meet-irreducible α-cut concept lattice ofM, for short, irreducible α-cut
CL.

The set M̂α, with the ordering defined onM, forms a complete sublattice of
the original one. Therefore, this mechanism provides a reduction of the original
concept lattice without modifying the information given by the concepts.

3 Combining both methods

An interesting option could be the combination of both reduction mechanisms.
In this section, we will analyze the results of such combination, explaining the
properties and the main advantages provided. Firstly, we need to introduce a
new definition related to the new merging mechanism.

Definition 3. Given a context (A,B,R, σ), the frame (L1, L2, P,&1, . . . ,&n),
the concept lattice (M,�), a value α ∈ L1 and (MY ,�) the concept lattice built
from a reduct Y ⊆ A. The concept lattice obtained applying the irreducible α-cut
to the concept lattice (MY ,�), is called r-irreducible α-cut concept lattice and

it is denoted as M̂ Y
α .

When the attribute classification satisfies that the set of relatively necessary
attributes, Kf , is not empty then several reducts can be obtained. This fact
will determine the subsequent size reduction i.e. depending on the choice of the
starting reduct, we will obtain a major or minor reduction of the size. This is
precisely what is shown in the following example.
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Example 1. It will be considered the framework L = (L1, L2, L3,�,&∗G), where
L1 = [0, 1]10, L2 = [0, 1]4 and L3 = [0, 1]5 are the regular partitions of [0, 1]
in 10, 4 and 5 pieces, respectively, and &∗G is the Gödel conjunctor defined on
L1 × L2, see [2] for more details. The fixed context is (A,B,R, σ), with A =
{a1, a2, a3, a4, a5, a6}, B = {b1, b2, b3}, R : A×B → L3 given by the table shown
in the left side of Figure 1, and σ is constantly &∗G. From this framework and

R b1 b2 b3

a1 0.6 0.8 0.6

a2 0.2 0.4 0.6

a3 0.2 0.4 0.2

a4 0.8 0.8 0.4

a5 1 1 0

a6 0.6 0.8 0

C0

C1 C2

C3 C4 C5 C6

C7 C8 C9 C10 C11

C17C12 C13 C14 C15 C16

C20C18 C19

C21

Fig. 1. The definition of the relation R of Example 1 and the Hasse diagram of (M,�)

this context, we obtain a multi-adjoint concept lattice composed by 21 concepts.
The Hasse diagram of the concept lattice (M,�) is presented in the right

side of Figure 1. In this case, C12, C13, C15, C17, C18, C19 and C20 are the
meet-irreducible elements and the fuzzy-attributes associated with the meet-
irreducible elements are listened below:

〈φ↓a5,0.1, φ
↓↑
a5,0.1

〉 = 〈φ↓a5,0.2, φ
↓↑
a5,0.2

〉 = 〈φ↓a5,0.3, φ
↓↑
a5,0.3

〉 = 〈φ↓a5,0.4, φ
↓↑
a5,0.4

〉 =

〈φ↓a5,0.5, φ
↓↑
a5,0.5

〉 = 〈φ↓a5,0.6, φ
↓↑
a5,0.6

〉 = 〈φ↓a5,0.7, φ
↓↑
a5,0.7

〉 = 〈φ↓a5,0.8, φ
↓↑
a5,0.8

〉 =

〈φ↓a5,0.9, φ
↓↑
a5,0.9

〉 = 〈φ↓a5,1.0, φ
↓↑
a5,1.0

〉 = 〈φ↓a6,0.1, φ
↓↑
a6,0.1

〉 = 〈φ↓a6,0.2, φ
↓↑
a6,0.2

〉 =

〈φ↓a6,0.3, φ
↓↑
a6,0.3

〉 = 〈φ↓a6,0.4, φ
↓↑
a6,0.4

〉 = 〈φ↓a6,0.5, φ
↓↑
a6,0.5

〉 = 〈φ↓a6,0.6, φ
↓↑
a6,0.6

〉 = C12

〈φ↓a4,0.9, φ
↓↑
a4,0.9

〉 = 〈φ↓a4,1.0, φ
↓↑
a4,1.0

〉 = C13

〈φ↓a1,0.9, φ
↓↑
a1,0.9

〉 = 〈φ↓a1,1.0, φ
↓↑
a1,1.0

〉 = C15

〈φ↓a2,0.5, φ
↓↑
a2,0.5

〉 = 〈φ↓a2,0.6, φ
↓↑
a2,0.6

〉 = C17

〈φ↓a4,0.5, φ
↓↑
a4,0.5

〉 = 〈φ↓a4,0.6, φ
↓↑
a4,0.6

〉 = 〈φ↓a4,0.7, φ
↓↑
a4,0.7

〉 = 〈φ↓a4,0.8, φ
↓↑
a4,0.8

〉 = C18

〈φ↓a1,0.7, φ
↓↑
a1,0.7

〉 = 〈φ↓a1,0.8, φ
↓↑
a1,0.8

〉 = C19

〈φ↓a2,0.3, φ
↓↑
a2,0.3

〉 = 〈φ↓a2,0.4, φ
↓↑
a2,0.4

〉 = C20
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According to the attribute classification theorems given in Section 2.1, we
have that in this case Cf = {a1, a2, a4}, Kf = {a5, a6} and If = {a3}. Con-
sidering this classification two reducts can be obtained, Y1 = {a1, a2, a4, a5}
and Y2 = {a1, a2, a4, a6}. From these reducts, we obtain two concept lattices
(MY1 ,�) and (MY2 ,�) isomorphic to the original one, that is, (M,�) ∼=
(MY1 ,�) ∼= (MY2 ,�).

Now, we will obtain the r-irreducible α-cut concept lattice of (MY1 ,�) with
α = 0.7. For that purpose, we need to consider the set of concepts 〈φ↓a,x, φ↓↑a,x〉
belongs to MF (Y1) such that α � x, with a maximal value x, that is:

M̂F (Y1)0.7 = {〈φ↓a5,1.0, φ
↓↑
a5,1.0

〉, 〈φ↓a4,1.0, φ
↓↑
a4,1.0

〉, 〈φ↓a1,1.0, φ
↓↑
a1,1.0

〉,
〈φ↓a4,0.8, φ

↓↑
a4,0.8

〉, 〈φ↓a1,0.8, φ
↓↑
a1,0.8

〉}

Considering the infimum of elements of M̂F (Y1)0.7 and the greatest element of

(MY1 ,�), we compute the lattice (M̂ Y1
0.7 ,�) as usual, which can be seen1 in the

left side of Figure 2.

Ext(C3)

Ext(C7) Ext(C8) Ext(C9)

Ext(C12) Ext(C13) Ext(C14) Ext(C15)

Ext(C18) Ext(C19)

Ext(C21)

Ext(C9)

Ext(C13) Ext(C14) Ext(C15)

Ext(C18) Ext(C19)

Ext(C21)

Fig. 2. The Hasse diagram of (M̂ Y1
0.7 ,�) (left) and (M̂ Y2

0.7 ,�) (right).

If we build the r-irreducible 0.7-cut concept lattice of (MY2 ,�), we need to
consider:

M̂F (Y2)0.7 = {〈φ↓a4,1.0, φ
↓↑
a4,1.0

〉, 〈φ↓a1,1.0, φ
↓↑
a1,1.0

〉, 〈φ↓a4,0.8, φ
↓↑
a4,0.8

〉, 〈φ↓a1,0.8, φ
↓↑
a1,0.8

〉}

Therefore, the reduced concept lattice is shown in the right side of Figure 2.
It is worth to note that the size reduction depends on the chosen reduct. For

example, if we consider Y1 we only remove the concepts C17 and C20, whereas

1 Observe that, only the extension of the concept has been represented in each node
since the intension does not coincide with the original intension of the concept be-
cause the number of attributes has been reduced.
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taking into account the reduct Y2 we also remove the concept C12. This is due to
the fact that C12 is obtained from the fuzzy-attributes φa5,1.0 and φa6,0.6. Hence,
if we regard Y2 in the construction process then the fuzzy-attribute related to
C12 does not exceed the cut established by α = 0.7.

Note that, if we had chosen a value for α less or equal to 0.6 then both
reductions would have coincided.

4 Conclusions and further works

This paper has combined the attribute reduction mechanism given in [6] and
the size reduction procedure presented in [5] in the multi-adjoint concept lattice
environment. We have proven that if we reduce the number of attributes and then
we carry out the meet-irreducible α-cut concept lattice, the size of the reduced
concept lattice depends on the reduct chosen from the attribute classification.

In the future, we will analyze the results of combining both reduction mech-
anism in order reversing and we will study how to obtain the relation between
attributes and objects from the meet-irreducible α-cut concept lattice in order
to build a concept lattice isomorphic to the reduced concept lattice by the cut.
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Abstract. There exist a number of non-trivial termination proofs of
functions (or algorithms) which are carried out more naturally and sim-
pler using well-founded multiset orderings. We present in this paper a
methodology to organize and simplify these kind of termination proofs in
the PVS specification and verification system. This methodology uses a
well–known result due to Dershowitz and Manna, which states that every
well–founded relation on a set T can be extended to a relation on finite
multisets over T which is also well-founded. Therefore, we also present
a formalization of this theorem in PVS. We think this methodology can
be very useful to develop non-trivial termination proofs in PVS. To illus-
trate this, we have applied our methodology to formalize in PVS some
termination proofs, like an iterative version of the Ackermann’s function
and the McCarthy’s 91 function.

1 Introduction

The use of well–founded orders for proving termination of recursive functions
was suggested by Floyd in [4]. The idea is to find a set T , with a well–founded
order < and a measure function m mapping the arguments of the function into
the elements of T , such that the measure of the arguments is reduced in each
recursive call. Due the well–foundedness of <, this measure can not decrease
indefinitely and hence, the termination of the function is assured.

The most used well–founded order is the usual order on natural numbers and
the lexicographic order on n–tuples of natural numbers. However, Dershowitz and
Manna [3] showed that every well–founded relation on a set T can be extended to
a well–founded relation on the finite multisets over T . They also proved that the
use of multiset orderings allows to construct simple and intuitive measure func-
tions to carry out non–trivial proofs of termination. In particular, they showed
that the multiset ordering can be used to prove the termination of Ackermann’s
function, McCarthy’s 91 function and production systems, programs defined in
term of rewriting rules.
? This work was partially supported by TIC-6064 Excellence project (Junta de An-
dalucía) and TIN2013-41086-P project (Spanish Ministry of Economy and Compet-
itiveness), cofinanced with FEDER funds.
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On the other hand, in the field of formal verification, we often have to tackle
the problem of proving termination of programs, logic reasoning systems or
rewriting systems by using one of the current systems like ACL2, COQ, HOL, Is-
abelle, PVS,. . . . These proofs of termination are non–trivial and, in many cases,
the use of multiset orderings can be very useful. Thus, in order to mechanize
proofs of termination in a formal system by using multiset orderings, it would
be appropriated to formalize these orderings in the corresponding system. In
fact, when we formalized in PVS a tableaux algorithm for the ALC description
logic [1], multisets were a key tool for proving its termination. Thus, we think
it is useful to hold in PVS a theory of wellfoundeness of multiset orderings, in
order to be able to carry out this kind of termination proofs in this system.

In this paper we present a methodology to systematize the proofs of ter-
mination of recursive functions using multiset orderings and we show two case
studies where we have used this methodology for proving termination of dif-
ferent tail recursive functions. We use the Dershowitz and Manna theorem [3],
that we have proved in an abstract way, allowing its instantiation to prove the
well–foundedness of particular multiset relations.

We will remark the main features of the PVS system according as we will
use them and we will explain both the definitions and the PVS proofs in a form
that can be understood without being an expert in PVS. However, a detailed de-
scription of this system can be seen in [7]. Moreover, due to the lack of space, we
will skip details of the proofs. Nevertheless, the whole formalization is available
at http://www.cs.us.es/~mjoseh/PROTEMO/

2 Methodology for proving termination with multiset
orderings

In order to define a recursive function in PVS with domain D and range R, a
measure function must be provided, along with an optional well-founded relation.
The measure should be a function whose signature matches that of the recursive
function, but with range type the domain of the order, which defaults to < on N
or on the ordinals. If an ordering <D is provided, then it must be a binary well-
founded relation. Thus, when a recursive function is defined in PVS, several proof
obligations (called TCCs) are generated to prove that <D is well-founded and
to prove that the arguments of f decrease with respect to <D in each recursive
call.

According to the work of Dershowitz and Manna [3], multiset orders can be
used to prove the termination of a recursive function f in the following way:
a measure function should be defined mapping each element of the domain D
to a finite multiset over a well-founded set (T,<T ), and a relation on D should
be considered such that two elements are related if and only if their measures
are related with respect to the multiset relation induced on M(T ) by <T . The
well-founded set (T,<T ) will depend on each specific function f .

For the purpose of formalizing this kind of proofs in PVS, we have proved in
PVS (following [3]) the well-foundedness of the multiset relation induced by a
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well-founded relation, in a way that we can easily use it for any relation, simply
by instantiating the parameters of the PVS theory.

Theorem 1. Let < be a transitive and well–founded relation on T . Then the
relation <mult is a well–founded relation onM(T ).

Previously, and using the definition of well-foundedness based on the notion
of minimal element, we have proved in PVS the well-foundedness of every relation
which can be embedded in a well-founded relation by a monotonic function.

Theorem 2. If f : (T,<)→ (T ′, <′) is monotone and (T ′, <′) is well–founded,
then (T,<) is well–founded.

Thus, the idea presented above can be clarified in the following methodology:
given a recursive function f : D → R

Step 1 Consider an appropiate set T and build a well-founded relation on it. If
T is the set of natural numbers or the set of ordinals, then the relation could
be the usual order <, whose well-foundedness property is ensured by the
prelude of PVS. In other cases, we can prove that (T,<T ) is well-founded by
building a monotonic function over a known well-founded set (T ′, <T ′) and
applying Theorem 2.

Step 2 Apply the Dershowitz–Manna theorem (1), assuring that (M(T ), <mult)
is well–founded. To do this in PVS, it is enough to instantiate the para-
meters of the PVS theory finite_bags_order with T and <T . Then, the
corresponding theorem less_mult_is_wf is automatically proved.

Step 3 Define an adequate measure function f_measure : D →M(T ).
Step 4 Define in D the relation <D induced by the measure function:

x <D y ⇔ f_measure(x) <mult f_measure(x)

It should be noted that, in this way, the measure function is monotone.
Therefore, Theorem 2 proves automatically that <D is a well–founded rela-
tion.

Step 5 Use the relation <D as the well–founded relation needed to prove the
termination of function f .

It should be noted that steps 2 and 4 can be considered totally mechanized, since
it is only necessary to instantiate the parameters of a PVS theory. Nevertheless,
steps 1, 3 and 5 are specific to each function.

3 Case studies

In this section, we present some examples in which the suggested methodology
has been used in PVS to prove non–trivial termination properties.
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3.1 Ackermann’s function

A tail recursive function which computes Ackermann’s function is A_it(m,n) =
A_it_aux((m), n), where

A_it_aux(S, z) =





z if S = ()
A_it_aux((s2, . . . , sk), z + 1) if S = (0, s2, . . . , sk)
A_it_aux((s1 − 1, s2, . . . , sk), 1) if s1 6= 0 ∧ z = 0
A_it_aux((s1, s1 − 1, s2, . . . , sk), z − 1) in other case

where S = (s1, . . . , sk) is a stack such that in every step

A_it_aux(S, z) = A(sk, A(sk−1, . . . , A(s1, z)))

The PVS specification of this function is the following

A_it_aux (p): RECURSIVE nat =
LET S = proj_1(p), z = proj_2(p) IN
IF null?(S) THEN z
ELSE LET s1 = car(S), S2 = cdr(S) IN

IF s1 = 0 THEN A_it_aux ((S2,z+1))
ELSIF z = 0 THEN A_it_aux ((cons (s1-1,S2),1))

ELSE A_it_aux ((cons(s1,cons(s1-1,S2)),z-1))
ENDIF

ENDIF MEASURE p BY less_measure

A_it(m,n): nat = A_it_aux(((: m :), n))

Let us note that, in this specification, the relation less_measure is not yet de-
termined. In [3], a proof of termination of this function using a multiset measure
has been shown. In this case, the measure function maps a pair ((s1, . . . , sk), z)

into the multiset of pairs of natural numbers {̇(s1, z), (s2 + 1, 0), . . . , (sk + 1, 0)}̇.
In order to build in PVS the appropriate relation less_measure and prove its

properties, we carry out the following steps, according to the explained method-
ology.

Step 1 In this case, T = N×N and <T is the lexicographic order. We prove that
it is a well–founded relation by defining a monotone function into ordinals.

Step 2 We prove that the extension to M(N × N) of the lexicographic order
on N×N is a well–founded ordering, by instantiating the parameters of the
PVS theory by N× N and the lexicographic order lex.

Step 3 We define the measure function from the pairs (S, z) inM(N× N)
a_measure(p): finite_bag[[nat,nat]] =

IF null?(S) THEN emptybag
ELSIF length(S)=1 THEN insert((car(S),z), emptybag)
ELSE insert((car(S),z), list_mult(cdr(S)))

ENDIF
WHERE S = proj_1(p), z = proj_2(p)
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Step 4 From step 3, we have directly proved, by Lemma 2, that the ordering
induced by measure function between the arguments of A_it_aux, is well–
founded
a_less(p1,p2): bool = less_mult(a_measure(p1),a_measure(p2))

a_less_wf: COROLLARY well_founded?[[list[nat],nat]](a_less)
Step 5 So, this is the function we need as well-founded order in the definition of

A_it_aux. We prove the proof obligations automatically generated by PVS
to ensure that the arguments of the function decrease in each recursive call.

3.2 McCarthy’s 91 function

McCarthy’s 91 function is a recursive function defined by John McCarthy in [5]
as

M(n) =

{
n− 10, if n > 100
M(M(n+ 11)), if n ≤ 100

This function returns 91 for all n ≤ 101 and n− 10 for n > 101. There are some
papers [3, 2, 6] that address termination proofs of this function. Our goal here
is to show how we use the methodology of multiset orderings in PVS to prove
termination of an iterative version of McCarthy’s 91 function. We follow the
same steps as for Ackermann’s function. First, we specify the function in PVS

mc_it_aux(p): RECURSIVE nat =
LET n = proj_1(p), z = proj_2(p) IN
IF n = 0 THEN z

ELSIF z > 100 THEN mc_it_aux(n-1,z-10)
ELSE mc_it_aux(n+1,z+11)

ENDIF MEASURE p BY less_measure

mc_it (x) :nat = mc_it_aux((1, x))

We will consider the termination problem of the function mc_it_aux. This
task is not trivial due to the behavior of the second recursive call. In [3] a
multiset measure is given to ensure termination of this function: every pair (n, z)

is measured by the finite multiset {̇z,mc(z),mc2(z), . . . ,mcn−1(z)}̇. Let us note
that mc_it_aux(n, z) = mcn(z), and that the relation to compare multisets is
the multiset relation induced by the following well–founded relation in N:

m <mc n⇔ n < m ≤ 111

In this case, we define in N the relation m <mc n = n < m ∧ m <= 111 and
we prove that (N, <mc) is well–founded, using Lemma 2. We prove that the
multiset relation induced inM(N) by <mc is well-founded, by instantiating the
parameters of the PVS theory finite_bags_order with N and <mc. We define
the measure function from N×N toM(N) and the order induced by this measure

93



function. Then, we have automatically proved that it is a well–founded relation.
Finally, we use the relation mc_it_less as the well-founded relation needed
to ensure the termination of the function mc_it_aux and we prove the proofs
obligations generated to ensure that the arguments of the function decrease in
each recursive call.

4 Conclusions and future work

We have presented a methodology to organize and simplify termination proofs
which use well–founded multiset orderings. The main utility of this methodology
is given by the easy way to prove the well–foundedness of a multiset relation. It
is enough to instantiate the parameters of a PVS theory and, automatically, a
corollary with the expected result is obtained. The non–mechanized part is to
define the measure function, that it is specific for each function, and to prove
that the arguments of the function decrease in each recursive call. In [1] we have
used this methodology to prove in PVS the termination of a tableau algorithm
for the ALC logic. This measure function is more complex than the previous
ones, since in this case, when a kind of rule (universal rules) is applied, this one
is not disabled forever, but it can be reapplied due to the introduction of new
individuals by subsequent applications of another kind of rule (existential rules).

Finally, we would like to point out two lines for future work. First, in order to
make the methodology more automatic, we would like to develop PVS strategies
to increase the mechanization of the process. Second, we would like to apply this
methodology to prove termination of rewriting systems or tableau algorithms,
in which a measure in multisets was required.
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Abstract. Success of mutation testing greatly depends on the mutation
operators defined. As a white-box technique, selecting specific mutants
for each language addressed is necessary, but it should be accompanied
by an implementation focused on the particular details of the language.
Only then we will be able to undertake a correct application of the tech-
nique, obtaining exactly the mutants that should be generated. This pa-
per shows different C++-specific features that a mutation tool for this
language should take into account with a twofold goal: creating valid
but also useful mutants. Refining the implementation may reduce the
computational cost of mutation testing application and enhance the ef-
fectiveness of mutation operators.

Keywords: Mutation testing, mutation operators, C++

1 Introduction

Mutation testing allows us to determine the adequacy of a test suite reveal-
ing several syntactic faults in our program. This technique can also be used to
improve the test suite by introducing new test cases that are able to distin-
guish these faulty versions from the original program [7,9]. This difference can
be found in the results of their executions. The faults, commonly known as mu-
tations, are introduced in the program via the mutation operators defined for a
certain language. For example, a mutation operator replacing relational opera-
tors may transform x > 1 into x < 1 to create a mutant. If a test suite detects
the mutation, we say that the mutant is dead; otherwise, the mutant is either
alive or is equivalent to the program under test.

Most works in literature deal with mutation operators from a high-level per-
spective based on their definition. On the contrary, there are few papers studying
in depth their implementation as this is not such an interesting matter to re-
search for being considered a technical detail. However, we claim that the correct
implementation of operators is of a great importance in the application of muta-
tion testing. Being this a white-box technique, automating mutation operators
tailored to the specifics of a language is a key factor to produce the mutants as
expected.
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In this paper, we aim to show how, in addition to a suitable operator def-
inition, the particularities of a mainstream language like C++ may affect the
number of mutants generated and the mutation operator effectiveness. Section 2
addresses the mutation operators which can be created for this language and the
method to put them into practice to achieve a high capacity for analysis of the
code. Section 3 lists different C++ features impacting the number of mutants
generated and how attending to them we can avoid mutants not useful for the
purpose of mutation testing. The last section presents the conclusions and the
future work to accomplish.

2 Mutation Operators in C++

2.1 Definition of Mutation Operators

Mutation operators mainly represent typical faults made by programmers. They
are therefore obtained from the analysis of the most common mistakes in the
development of applications in a certain language, representing the faults that
the technique will treat within the code. Several faults are common to many
general purpose languages, but each language possesses certain features making
a specific study necessary. Thus, different works have been prepared to define a
set of operators for a great range of languages [4]. In any case, we deem that
the entire development of the technique should follow the same path so that it
is feasible to compare every contribution in this field.

Mutation testing has been applied at different levels of the language. The level
that the user chooses depends on the program characteristics and the type of
testing to accomplish [4]. As a mainstream language, a set of mutation operators
can be defined for each of these levels:

– Unit level: It refers to the traditional mutation applied to a single function
or method to test its functionality. These operators are usually known as
traditional operators.

– Class level: This level deals with the mutation of object-oriented features,
modifying both declarations and expressions relating a class.

– Integration level: Intermediate level between the unit and the system lev-
els. Function invocations are tested, making changes from parameters to
values returned by the functions.

– Multi-class or system level: The operators at this level are intended to
test a complete program, checking from interactions among classes to the
user interface [6].

The mutation operators for C++ at the unit level take as starting point the
research around C, taking into account the similarity of both languages. We can
make the appropriate modifications to adapt the operators to C++ [1]. As for
the class level, a complete set of class mutation operators were defined [2]; we
adapted several operators from Java and C#, and also defined new operators
regarding C++ features which had not been studied yet. In addition to these
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levels, we can add new levels focused on specific properties of the language
frequently used. Regarding C++, this level would mainly correspond to the
C++ Standard Library, which provides a great amount of facilities (e.g. stream
input/output). Hence, Kusano et al. [5] applied mutation testing for concurrency
constructs in C++ applications.

2.2 Technique to Inject Mutations in C++

One of the traditional approaches when analyzing the code to inject mutations
is by means of a pattern matching based on regular expressions over the code.
However, this method presents some limitations and may not be sufficient to
achieve the expected result. As a simple example, when using this approach we
have to check that each mutation location is not within a line or block comment
before applying the mutation. In addition, the analysis of C++ code is not easy,
especially because of its huge grammar. In case of similar languages to C++ like
Java, mutations have been inserted directly on the bytecode or introspection has
been also used. However, we have to discard these options in the case of C++
as they are not available for the user.

Thus, the most robust and comprehensive approach to apply mutation test-
ing to C++ is resorting to the abstract syntax tree (AST) generated with a
full-fledged compiler for this language [2]. This tree structures the code and
determines the relations among the elements. Therefore, the AST allows us to
properly analyze and solve complex situations in this language, as the ones listed
in Section 3.1. Moreover, we will be able to undertake a much more fine-grained
control of the potential mutation locations as well as to create mutants comply-
ing with the grammar rules.

3 Implementation Criteria

3.1 Creating Tailored Mutants to C++ Particularities

The operator implementation mode explained in Section 2.2 is definitely chal-
lenging, as stated by Derezińska [3]: it is necessary to analyze the AST and
establish a margin for each mutation operator, which sets the different situa-
tions where an operator can be applied or not. Notwithstanding, the insertion
of the faults can be controlled in an accurate manner as we can grasp from the
AST well-defined elements.

Nevertheless, we need to take into account several aspects related with the
C++ characteristics so that mutations meet expectations. These features have
a direct effect on the number and kind of mutants created. An illustrative enu-
meration of various considerations are described below:

– Class and structure: For compatibility with C, classes were introduced as
an extension of the structures so that, in addition to data members, function
members and operators could be added as well. However, members in a class
are hidden by default while structures are visible from outside. This is, in
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fact, the only difference between the keywords struct and class. Therefore,
the set of operators applicable to classes can also perform on structures when
possible.

– Operator overloading property: Most operators of this language can be
redefined, giving them different semantics depending on the operand types.
This feature needs to be considered in mutation testing as it implies the
possibility of using operators of the language with user-defined types in-
stead of defining new standard methods. At the same time, for instance,
the traditional mutation operator replacing arithmetic operators may have
changed its usual mathematical meaning when applied to user-defined ob-
jects. Nonetheless, the AST represents the invocations to an overloaded op-
erator with a special kind of node, which is different from the one for tradi-
tional method callings. Hence, this aspect can be solved when implementing
mutation operators related with this matter.

– Typedefs and namespaces: Evaluating types when searching for mutation
locations in the code is an essential task. For instance, if a mutation operator
replaces variables of the same type, a comparison of the types of the involved
variables should be undertaken previously. The typedef keyword allows us to
give a new name to a concrete type. Therefore, if we do not take this feature
into account, some mutants may be overlooked.
Also in this regard, several declarations can be grouped together in a names-
pace. We can declare similar elements in the code provided that they are in
different namespaces. Thus, we need to properly qualify the references to
declarations in namespaces to avoid confusion.

– Definition and declaration: Several elements in C++, as functions and
methods, can be declared at any moment, but defined further in the code.
This distinction is important in two aspects. Firstly, both the declaration
and the definition should be modified if a mutation operator changes the
signature or the value returned of a function or method. Secondly, we can
invoke an element which has not been defined yet but has been declared
previously.

3.2 Creating Useful Mutants

The operator implementation is usually a complex task that requires follow-
up work. This implementation becomes more difficult when some conditions
are imposed on the operators to prevent the creation of uninteresting mutants,
i. e., mutants which do not help us assess the adequacy level of a test suite.
However, this fact could allow for a reduction of mutants and, consequently, of
the computational cost of the technique, which is a major concern when using
mutation testing. Specific rules for several operators to cut out unnecessary
mutants has been shown for Java [8].

We consider that the following kinds of mutants should be prevented as much
as possible. Each of these kinds are accompanied by examples closely related to
the C++ features:
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– Invalid mutants: The executable programs created from the mutated code
cannot be compiled or linked. An example of mutation that always produces
an invalid mutant is deleting the initialization of reference type variables, as
they must be initialized when declared.

– Equivalent mutants: There is not any input which is able to detect a dif-
ference between the original program and the mutant. For instance, the PVI
operator [2] inserts the virtual keyword in methods which are not marked
with this modifier. The method however may be already virtual although
it is not marked as virtual. This happens when the method is overriding a
virtual method in a base class. This mutation would produce an equivalent
mutant (see Figure 1).

– Trivial mutants: The difference between the original and the mutant ver-
sion is found by any input exercising the mutation. The usage of templates
sometimes produces this type of mutants. For instance, some errors in a
class template do not emerge until an object of the class template is created
(whatever the type used), such as a constant data member which had not
been initialized in a constructor.

Original classes:
c l a s s A{ c l a s s B: pub l i c A{ c l a s s C: pub l i c B{

. . . . . . . . . . . . . . . . . .
v i r t u a l void m( ) { . . . } void m( ) { . . . } void m( ) { . . . }

} ; } ; } ;

Mutant: Equivalent:
c l a s s B: pub l i c A{ The method ’m’ in c l a s s B i s v i r t u a l

. . . . . . with or without i n c l ud ing the virtual
virtual void m( ) { . . . } keyword because the method ’m’ in A

} ; i s a l r eady marked as virtual .

Fig. 1. Example of equivalent mutant in the PVI operator

4 Conclusion and Future Work

A correct implementation of the mutation operators beyond their narrow defini-
tions is a decisive step towards a fruitful application of mutation testing. In this
regard, the specifics of each language should be handled because the grammar
rules may influence the kind of mutants generated with a mutation operator.
The AST analysis is really useful to fulfil with the restrictions imposed on the
application of the mutation operators. These restrictions, mainly based on the
particular features of the language, may avoid generating mutants which are not
useful, thereby reducing the high computational cost of the technique.
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As future work, we intend to obtain a complete list of C++ features which
can affect the mutation operators at the unit and the class level. This collection
can be useful to develop mutation tools addressing this language so that the
study of the results of different tools is somewhat comparable. Likewise, we
aim to implement different mutation operators using rules to reduce equivalent,
invalid and trivial mutants and then evaluate the impact of such improvement
in the cost and effectiveness of the technique.
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FPI-PPI-BC 2012-037 of the University of Cadiz.
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Abstract. Due to the lack of periodic maintenance processes, several
important renovation steps have to be realized in the near future in the
pre-war residential houses in the Historic districts of Budapest, Hungary.
Most of these steps causes enormous outcome for the owners, therefore
these interventions have to be planned carefully both from engineering
and economic aspects.

As a combination of the fuzzy signature structure and the principles of
finite-state machines a new formal method is proposed for generating a
tool for supporting the desired renovation planning, concerning the fi-
nancial costs and reasonable sequence of work phases. With the support
of information obtained by detailed building diagnostic analyses of the
pre-war urban-type residential houses, generally accepted and applied
technical instructions of the building renovation processes and the con-
tractors’ billing database the renovation procedure of the plinth zone
(damp proof course, drainage connections and renderings) of a block of
residential houses is presented as a case study.

Keywords: urban-type residential house, building renovation, fuzzy sig-
nature, fuzzy state machine

1 Introduction

The residential building stock of Budapest (Hungary) was nationalized after
World War II, therefore theoretically the state administration took the respon-
sibility for its maintenance. By the time of the re-privatization of the tenement
houses it became clear that the designated state organizations were incompetent
for this task because of three reasons: lack of financial funds, organizational de-
ficiencies and lack of any real motivation and intentions (due to some ideological
causes). For this reason, the owners (basically, the former tenants) inherited their
residential houses in very bad condition that is still clearly visible and (tactile)
in the historic districts. This problem particularly affects the tenement houses
built before 1920 with traditional constructions and components.

L. Kóczy, J. Medina (Eds): ESCIM 2015. 978-84-608-2823-5 101



2 G. I. Molnárka, M. F. Hatwágner, L. T. Kóczy

The ownership communities of these houses have several alternatives for han-
dling the current situation. Presuming that the owners feel themselves respon-
sible for the maintenance of their properties, they may organize the renovation
process in different ways. Considering the status of the given building, the main
solutions can be the complete renovation without any cease, or step-by-step.
Whereas it is generally assumed that the owners do not have adequate financial
funding for for realizing any quick and proper renovation without external aid,
the sequential intervention may be more appealing for the inhabitants. In this
case any renovation procedure has to be planned properly in advance from the
first work phase to the end, both financially and technically.

There are several factors influencing the schedule of the rehabilitation pro-
cess. Without any details, the most important factors are: the grade of danger
caused by the observed failure, the interrelations among deteriorated building
components and decays, and the presence of a protocol for the repair, the finan-
cial timing, some complex logistics aspects, etc.

Due to the technical characteristics of the buildings, any house may be con-
sidered as a hierarchically ordered set of different building components where the
state of each component and set of components influence the state of the com-
plete building. This feature was advantageously used in a comparative analysis
before [1].

2 A Model Proposed for Supporting the Renovation
Process

As a summary of these statements the followings are ascertainable:

1. The physical condition of any building can be characterized by a continuous
state scale.

2. The building is constituted by a hierarchically ordered component structure.

3. The state transition of the building is continuous in time; decay and reno-
vation phases may slightly modify the transition.

The proposed approach to be introduced here for handling the above prob-
lem is a model and an attempt for a solution based on the principles of fuzzy
signatures and fuzzy state machines combined into what we call Fuzzy Signature
State Machines (FSSM).

The most important reason for using fuzzy signatures here as the starting
point is the fact that the structure of building diagnostic surveys follows the
architectural and civil engineering common sense, where the sub-structures and
components of each building are arranged in hierarchical tree-like structures.
In this model the whole building might be presented by the root of the tree
and each major sub-component is a first level branch, with further sub-branches
describing sub-sub-components, etc. as it will be shown in the next sections.

At this point the definition of fuzzy signature should be recalled.
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Vector Valued Fuzzy Sets (VVFS) [2] are a simple extension of the fuzzy sets
that may be considered as a special case of L-fuzzy sets [3]:

An = {X,µAn
}, where µAn : X → [0, 1]n (1)

Thus a membership degree is a multi-component value here, e.g. [µ1, µ2, · · · , µn]T .
Fuzzy signatures (FSig) represent a further extension of VVFS as here any com-
ponent might be a further nested vector, and so on [5], [4]:

Afs = {X,µAfs
}, where µAfs

: X →M1 ×M2 × · · · ×Mn,

whereMi = [0, 1] or [Mi1 ×Mi2 × · · · ×Min ]T
(2)

The following simple example illustrates the structure of a simple fuzzy signature:

µAfs = [µ1, µ2, [µ31 , µ32 , [µ331
, µ332

, µ333
]], µ4, [µ51 , µ52 ], µ6]T (3)

The advantage of using fuzzy signatures is that here any closer grouping and sub-
grouping of fuzzy features may be given by the tree structure. Fuzzy signatures
are associated with a set of aggregation. Each sub-component set may be aggre-
gated by its respective aggregation operation, thus reducing the sub-component
to one higher level.

The above example has the following associated aggregation structure:
{a0{a3{a33}{a5}}, where each a◦ denotes an aggregation, particularly the one
associated with the child node x◦ associated with µ◦, thus the following example
signature might be reduced ”upwards” to the root as follows:

µAfs ⇒ [µ1, µ2, [µ31 , µ32 , µ33 = a33(µ331
, µ332

, µ333
), µ4, µ5 =

= a5(µ51 , µ52), µ6]T ⇒
⇒ [µ1, µ2, µ3 = a3(µ31 , µ32 , µ33), µ4, µ5, µ6]T ⇒
⇒ µ0 = a0(µ1, µ2, µ3, µ4, µ5, µ6)

(4)

The operations among fuzzy signatures with partially different structure may be
carried out, by finding the largest common sub-structure and reducing all signa-
tures up to that substructure. This might be necessary if the surveys referred
to this paper are considered as often their depth and detail are different. As an
example, maybe in ”Survey A” the plinth zone is considered as a single compo-
nent of the house and is evaluated by a single linguistic quality label, while in
”Survey B” this is done in detail, and the damp proofing system, casing and the
plastering are are described separately.

In our previous work we applied VVFS and FSig [6] for describing sets of
objects with uncertain features, especially when an internal theoretical structure
of these features could be established. In [7] we presented an approach where the
fuzzy signatures could be deployed for describing existing residential houses in
order to support decisions of local authorities concerning when and how these
buildings should be renovated involving non-measurable (and subjective) factors.
In that research a series of theoretically arrangeable features were taken into
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consideration and eventually a single aggregated fuzzy membership value could
be calculated on the basis of available detailed expert evaluation sheets. In that
model, however, the available information does not support any decision strategy
concerning actual sequence of the measures leading to complete renovation; and
it is also insufficient to optimize the sequence from the aspect of local or global
cost efficiency. In the following section, the mathematical model of the proposed
maintenance protocol will be introduced.

Finite State Machines are determined by the sets of input states X, internal
states Q, and the transition function f (Moore model). The latter determines
the transition that will occur when a certain input state change triggers a state
transition. For simplicity the following is assumed as the starting point of our
new model:

A = 〈X,Q, f〉 (5)

f : X ×Q→ Q, whereX = {xi} andQ = {qi} (6)

Thus, a new internal state is determined by the transition function as follows:

qi+1 = f(xi, qi) (7)

In matrix form:

F =




f(x1, q1) f(x2, q1) . . . f(xn, q1)
f(x1, q2) f(xn, q2)

...
...

f(x1, qm) f(x2, qm) . . . f(xn, qm)


 (8)

The transition function/matrix maybe interpreted with help of a relation R
on X ×Q2,where

R(xi, qj , qk) = 1, if f(xi, qj) = qk (9)

and
R(xi, qj , qk) = 0, if f(xi, qj) 6= qk (10)

In the present application an extension to fuzzy states is considered in the
following sense. Every aspect of the phenomenon to model is represented by a
state universe of sub-states Qi. The states themselves are (fuzzy) subsets of the
universe of discourse state sets, so that within Qi a frame of cognition is deter-
mined (its fineness depending on the application context and on the requirements
toward the optimisation algorithm), so that typical states like ”Totally intact”,
”Slightly damaged”, ”Medium condition”, etc., up to ”Dangerous for life” are
considered. Any transition from one state to the other (improvement of the con-
dition, refurbishment or renovation) involves a certain cost c. In the case of a
transition from qi to qj it is expressed by a membership value µij = c(qi, qj).
In our model the added cost Σµij along a path qi1 → qi2 → · · · → qin is not
usually equivalent with the cost of the transition µin along the edge qil → qin .
This is in accordance with the non-additivity property of the fuzzy (possibility)
measure and is very convenient in our application, as it is also not additive in
the case of serial renovations.
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As a simple example the Fig. 1 depicts the possible transitions among the
states of a specific sub-state: Q0 represents the initial (deteriorated) state, while
Qni

represents the acceptable (renovated) state.

Fig. 1. The function diagram of fuzzy state machine

In the case of fuzzy signature machines each of the leaves contains a sub-
automaton with the above property. The parent leave of a certain sub-graph is
constructed from the child leaves, so that the sub-automaton

Ai = Ai1 ×Ai2 × · · · ×Aim , and thus the states of Ai are Qi = Qi1 ×Qi2 ×
· · · × Qin , so that the transition Qj1 → Qj2 in this case means the parallel (or
subsequent) transitions qj11 → qj12 × qj21 → qj22 × · · · × qjn1

→ qjn2
. A special

aggregation is associated with each leaf; similarly as it is in the fuzzy signatures,
however, in this case the aggregation calculates the resulting cost µj12

of the
transition qj1 → qj2 , so that

µj12
= c(qj1 , qj2) = aj(c(qj11 , qj12 ), c(qj21 , qj22 ), · · · , c(qjn1

, qjn2
)), (11)

where aj stands for the respective (often non-symmetric) aggregation.

The selection of aggregation operator is a key issue that may determine the
final result of the model; however, the signature structure makes the application
of different aggregation methods possible for each node.

3 Case Study: Optimizing the Renovation of the Plinth
Zone in a Block of Residential Houses

In the case study the ”plinth zone” of the residential houses in the same block is
represented. In practice, the building as a hierarchically ordered set of building
components may have numerous state machines that are more complex in struc-
ture and in operation. However, the application of the proposed model may be
easily understood on this simple unit, where three sub-state machines operate.
The Fig. 2 illustrates the examined unit: in this model the observed conditions
of the building components determine their initial state values (the accept state
values express the reasonable and good condition of these components).
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Fig. 2. The State Machine ”Plinth Zone” (A2) and its sub-State Machines (A21 −A23)

The Table 1 summarizes the observations briefly in each building components
in the examined sequence; the initial state values are assigned to each sub-state
machine.

Table 1. Observations in the initial state of the sub-state machines of the ”plinth
zone”

Sub-state Machine Observation Initial state value

A21 Damp Proof
Course

Missing or low performance of horizon-
tal DPC → the soil moisture flows up
in the masonry structure

x21
0 = 0.25

A22 Joints of Drainage
System

The embedded sections below the
ground are broken or cracked; the joints
are not watertight → the rainwater
flows directly into the bottom wall with-
out any hindrance

x22
0 = 0.45

A23 Renderings

The formerly applied waterproof plaster
prevents the water to evaporate towards
the courtyard → the water appears on
the internal surface of walls

x23
0 = 0.30

Due to some renovation processes, several internal states may be determined
in the sub-sequences, where the interventions trigger the state change; the ci
cost may be assigned to these state changes. With a rough approximation 2;1;2
internal states were determined respectively. The ci trigger were calculated based
on the nationally accepted contractors’ billing database.

The attributes of the building components and the simplicity of the method
verify alike the application of Ordered Weighted Averaging Aggregation (OWA)
operator as it was presented by Yager in [8]. In this case the w weighting factors
may represent the importance of the renovation steps that is also based on
experts’ statements. The Table 2 summarizes the basic data of each sub-state
machines; their weighting factors are also indicated.

In the A2 state machine 3 × 2 × 3 = 18 states may be determined as a
combination of the three sub-state machines. In the formed state space the accept
state may be reached on numerous paths, where the optimum solution (the
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Table 2. The initial, internal and accept states and the costs of transitions among
state changes (A21 −A23)

Sub-state machines
State A21 A22 A23

w21 = 0.75 w22 = 0.55 w23 = 0.25

Q0 x21
0 = 0.25 x22

0 = 0.45 x23
0 = 0.30

Q1 x21
1 = 0.65 x22

1 = 0.78 x23
1 = 0.50

c2101 = e 51,650 c2201 = e 8,064 c2301 = e 8,064

Q2 x21
2 = 0.85 x23

2 = 0.75

c2112 = e 22,500 c2312 = e 6,850

c2102 = e 63,030 c2302 = e 11,930

highest efficacy and the lowest cost in the same time) can not be found easily.
Therefore a software was developed to evaluate the data: in the calculation
the costs and the internal state values were also taken into consideration. The
evaluation of the initial and the accept states of sub-state machines and their
aggregation to the level of the A2 state machine is illustrated in Fig. 3.

Fig. 3. The Initial and Accept States in A2 State Machine

As a result, the (Q21
0 , Q

22
0 , Q

23
0 ) → (Q21

0 , Q
22
0 , Q

23
2 ) → (Q21

2 , Q
22
1 , Q

23
2 ) path

was calculated as the cost optimum solution in the renovation process of the
plinth zone (as it is illustrated in Fig.4).

4 Conclusions and Future Work

It is needless to say that a complex renovation plan for the entire building may
help the owners for developing the physical condition of their properties. In
practice, the renovation of old residential houses is realized in sequences, so that
several internal states may be distinguished. With the proposed model the cost
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Fig. 4. The Cost-Optimized Path in the State Space of A2 State Machine

effective renovation sequence may be found, were the costs and the state changes
are taken into consideration in the same time.

This study revealed that the ”plinth zone” renovation process may have 18
states with more than 90 state changes. The entire building has a limited num-
ber of such sequences; however this number might be rather high. Because of
the computational complexity of the optimization problem, a meta-heuristics
with reasonably low complexity but good convergence expectations is proposed,
such as the Bacterial Evolutionary / Bacterial Memetic Algorithm, the Particle
Swarm or the Imperialist Competitive Algorithm.
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5. Kóczy, L. T., Vámos, T., Biró, G.: Fuzzy Signatures. In: EUROFUSE-SIC ’99, pp.
210-217 (1999)
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Abstract During the last decade we have designed the FLOPER tool
for assisting the development of flexible software applications coded with
a promising language in the fuzzy logic programming arena acomplishing
with the the so-called multi-adjoint logic programming approach, where
a set of (logic) Prolog-like rules are accompanied with a set of (func-
tional) Haskell-like fuzzy connective definitions for manipulating truth
degrees beyond the simpler case of {true,false}. Moreover, we have re-
cently provided optimization techniques which reuse some variants of
program transformation techniques based on unfolding which have been
largely exploited in the pure functional -not fuzzy- setting for enhancing
the behavior of such operators. In this paper we show how to improve the
efficiency of the proper unfolding process by reusing the very well-known
concept of dependency graph.

Keywords: Fuzzy Logic Programming, Connectives, Unfolding

1 Introduction

Fuzzy Logic Programming is an interesting and still growing research area that
agglutinates the efforts for introducing fuzzy logic into Logic Programming [7],
in order to provide techniques and constructs for dealing with uncertainty and
approximated reasoning in a natural way. Most of these systems replace the
classical inference mechanism of SLD–Resolution with a fuzzy variant which is
able to handle partial truth. This is the case of multi-adjoint logic programming
(MALP in brief, [8]), where programs are parametric to lattices modeling rich
notions of truth degrees. In this framework, a program is a set of “weighted”
rules together with a set of equations (rewriting rules) defining the repertoire of
fuzzy connectives considered in a concrete lattice of truth degrees.

To solve a MALP goal, i.e, aquery to the system plus a substitution (ini-
tially the empty substitution, denoted by id), a generalization of the classical
modus ponens inference rule called admissible steps are systematically applied on
atoms in a similar way to classical resolution steps in pure logic programming,
thus returning a state composed by a computed substitution together with an
? Work supported by the EU (FEDER), and the Spanish MINECO Ministry (Minis-
terio de Economía y Competitividad) under grant TIN2013-45732-C4-2-P.
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expression where all atoms have been exploited. Next, this expression is inter-
preted under a given lattice, hence returning a pair 〈truth degree; substitution〉
which is the fuzzy counterpart of the classical notion of computed answer used
in pure logic programming.

Moreover, in [9] we tried to reduce the complexity of connectives (also allevi-
ating the computational cost of derivations) by safely removing all the intermedi-
ate calls performed on the equations defining the behavior of such connectives. In
Section 2 we show that this process can be easily described in terms of “unfold-
ing”, a well-known, widely used, semantics-preserving program transformation
operation which in most declarative paradigms is usually based on the appli-
cation of computation steps on the body of program rules ([5,3,4] describe our
experiences regarding the unfolding of fuzzy logic programms). The novelty of
our present approach is that it is the first time that unfolding is not applied to
program rules, but to connective definitions, maintaining the same final goal,
i.e., generating more efficient code. Before concluding in Section 4, we reuse in
Section 3 some techniques based on graphs coming from the field of program
analysis to also improve the proper transformation process as much as possible,
which conforms the main goal of the present paper.

2 MALP and Unfolding Connective Definitions

This section summarizes the main features of multi-adjoint logic programming
(see [8] for a complete formulation of this framework). We work with a first
order language, L, containing variables, constants, function symbols, predicate
symbols, and several (arbitrary) connectives to increase language expressive-
ness: implication connectives (←1,←2, . . .); conjunctive operators (denoted by
&1,&2, . . .), disjunctive operators (|1, |2, . . .), and hybrid operators (usually de-
noted by @1,@2, . . .), all of them are grouped under the name of “aggregators” or
directly “connectives”. Aggregation operators are useful to describe/specify user
preferences. An aggregation operator, when interpreted as a truth function, may
be an arithmetic mean, a weighted sum or in general any monotone application
whose arguments are values of a complete bounded lattice L. For example, if
an aggregator @ is interpreted as [[@]](x, y, z) = (3x + 2y + z)/6, we are giving
the highest preference to the first argument, then to the second, being the third
argument the least significant. Although these connectives are binary operators,
we usually generalize them as functions with an arbitrary number of arguments.
So, we often write @(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By def-
inition, the truth function for an n-ary aggregation operator [[@]] : Ln → L is
required to be monotonous and fulfills [[@]](>, . . . ,>) = >, [[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains the values of a multi-adjoint lattice,
〈L,�,←1,&1, . . . ,←n,&n〉, equipped with a collection of adjoint pairs 〈←i,&i〉,
where each &i is a conjunctor which is intended to the evaluation of modus
ponens [8]. In general, L may be the carrier of any complete bounded lattice
but, for readability reasons, in the examples we shall select L as the set of real
numbers in the interval [0, 1]. A L-expression is a well-formed expression com-
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posed by values and connectives of L, as well as variable symbols and primitive
operators (i.e., arithmetic symbols such as ∗,+,min, etc...). In what follows, we
assume that the truth function of any connective @ in L is given by its corre-
sponding connective definition, that is, an equation or rewriting rule of the form
@(x1, . . . , xn) = E, where E is a L-expression not containing variable symbols
apart from x1, . . . , xn.

The use of connectives inside the definition of other connectives is a power-
ful expressive resource useful not only for programmers interested in describing
complex aggregators, but it also plays an important role in fuzzy transforma-
tion techniques such as the fold/unfold framework we have described in [5,3,4].
The following definition recasted from [9], in essence describes a technique based
on classical unfolding transformations for simplifying, when possible, connective
definitions by “unnesting” unnecesary calls to other connectives.

Definition 1 (C-Unfolding). Let 〈L,�〉 be a multi-adjoint lattice contain-
ing the connective definitions @(x1, . . . , xn) = E and @′(x′1, . . . , x

′
m) = E′,

such that a call to @′ of the form @′(t1, . . . , tm) appears in E. Then, the un-
folding of connective @ w.r.t. connective @′ or directly, the c-unfolding of @,
is the new equation: @(x1, . . . , xn) = E[@′(t1, . . . , tm)/E′′], where E′′ is ob-
tained from the L-expression E′ by replacing each variable (formal parame-
ter) x′i by its corresponding value (actual parameter) ti, 1 ≤ i ≤ m, that is
E′′ = E′[x′1/t1, . . . , x

′
m/tm].

We assume here that the rules (equations) describing connective definitions are
taken renamed apart (at least one of them) before applying an unfolding step,
as it is also usual with program rules in many declarative transformation tasks.

Example 1. Given connective: @∗(x1, x2) = &prod(|luka(x1, 0.6), x2), and re-
membering that |luka(x′1, x′2) = min(1, x′1 + x′2), then, we can unfold connective
@∗ w.r.t. connective |luka as follows:

– Firstly, we generate the “matcher” between the call |luka(x1, 0.6) appearing
in the “rhs” (right hand side) of the first rule and the “lhs” (left hand side)
of the second rule |luka(x′1, x′2), thus producing links x′1/x1 and x′2/0.6.

– Next, we apply both bindings to the rhs of the second rule, obtaining the
L-expression min(1, x1 + 0.6).

– Then, this L-expression is used to replace the original call to |luka in the rhs
of the first rule, producing &prod(min(1, x1 + 0.6), x2).

– Finally, this last L-expression conforms the rhs of the new connective defi-
nition for @∗, that is: @∗(x1, x2) = &prod(min(1, x1 + 0.6), x2).

Following the same method, but performing now the c-unfolding of @∗ w.r.t.
&prod whose connective definition is &prod(x1, x2) = x1 ∗ x2, we obtain the final
rule defining @∗ with the following shape @∗(x1, x2) = min(1, x1 + 0.6) ∗ x2.
Note that the new connective definition is just a simple arithmetic expressions
involving primitive operators but no calls to other connectives, as wanted.
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3 C-Unfolding and Call Graphs

Our experiences in fuzzy fold/unfold transformations [5,3,4], reveal us that dras-
tic situations associated to degenerated transformation sequences might eventu-
ally produce highly nested definitions of connectives. For instance, assume the
following sequence of (extremely inefficient) connective definitions:

@100(x1, x2) = @99(x1, x2)
@99(x1, x2) = @98(x1, x2)
@98(x1, x2) = @97(x1, x2)
........ .........
@1(x1, x2) = @0(x1, x2)
@0(x1, x2) = x1 ∗ x2

When trying to solve two expressions of the form @100(0.9, 0.8) and @0(0.9, 0.8),
we obtain the same result 0.72, but the effort needed to solve the first expression
is very high (due to the 100 avoidable calls to auxiliary connectives) compared
with the second expression (which simply evaluates the arithmetic operator ∗).

Fortunately, by systematically performing c-unfolding on the previous con-
nectives, this problem is successfully solved in a simple way: after applying a c-
unfolding step on aggregator @100 we obtain @100(x1, x2) = @98(x1, x2), which
admits a new c-unfolding process to become @100(x1, x2) = @97(x1, x2), and
following this trail, after applying the final one-hundredth c-unfolding step, we
reach the desired connective definition @100(x1, x2) = x1 ∗ x2. Of course, the
transformation process does not finish here, because we also need to rearrange
the shape of all the remaining connective definitions. So, for each aggregator
@i, 0 ≤ i ≤ 100, we need exactly i c-unfolding steps to achieve the appropriate
connective definition.

However, there exist a second, much more intelligent alternative to highly
reduce the number of transformation steps needed to obtain the same final set
of improved connective definitions. In our example, the idea is to proceed just
in the inverse order than previously. So, since @0 does not admit unfolding,
we proceed with @1, whose connective definition becomes @1(x1, x2) = x1 ∗
x2 after just a single c-unfolding step. Now, we take profit of this improved
definition when unfolding @2, since in just a unique (nor two) c-unfolding steps
we obtain the optimal definition @2(x1, x2) = x1 ∗ x2. Note that the benefits of
this last process, are also inherited when transforming @3, @4 and so on. So, the
advantages obtained after applying each c-unfolding on a different connective, are
“propagated” to the remaining connectives being improved, which implies that
we simply need one hundred transformation steps to optimize the definitions of
the whole set of connectives.

In order to identify in a systematic way the best ordering for performing
c-unfolding operations on connectives, we firstly construct the call graph of a
multi-adjoint lattice L associated to a given program P, i.e., a directed graph
that contains the connective symbols as nodes and an edge from connective @ to
aggregator @′ for each connective definition in L of the form @(x1, . . . , xn) = E,
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where the L-expression E contains a call to @′. Given an edge from node @ to
node @′, we denote it as an out-edge of @ and as an in-edge of @′. For instance,
the call graphs associated to all the connectives seen so far are:

∨L ←− @∗ −→ &P

@100 −→ @99 −→ . . . −→ @1 −→ @0

As we are going to see, the use of call graphs will largely help us to decide when
to unfold each connective in order to minimize the number of transformation
steps. Anyway, before doing this, it is important to note that the construction
of such graphs constitute a fast way to detect possibly abnormal connective
definitions: if there exist cycles in the graph, all connectives involved on such
cycles should be considered corrupt, since in most cases, their further evaluation
might fall in infinite loop. For this reason, in what follows we only consider call
graphs without cycles, as occurs with the ones depicted before.

When selecting a connective to apply c-unfolding, we give priority to those
ones without out-edges, as occurs in our examples with nodes labeled with ∨L,
&P and @0, which in our particular case do not need c-unfolding because their
definitions do not perform calls to other aggregators. Once a concrete connective
has been selected and then unfolded as much as possible (and hence, its definition
has been completely improved by removing all its auxiliary calls), then the proper
node as well as all its in-edges (remember that it has not associated out-edges)
are removed from the graph. The process is iterated as much as needed until the
call graph becomes empty. For instance in our example, once removed nodes ∨L,
&P and @0, the new candidates are nodes @∗ and @1. The first one is unfolded
w.r.t. ∨L and &P and then removed, whereas the second one is dropped out after
being unfolded w.r.t. @0. Then the process continues with @2, next @3 and so on,
being @100 the last connective whose definition is optimized by applying just a
single c-unfolding step, thus accomplishing with the desired ordering and benefits
reported along this section. This methodology can be formalized as follows:

1. Build a "call graph" G from a multi-adjoint lattice L, where:
(a) each node in G is a connective defined in L.
(b) each directed edge in G "means" a call from @ to @’.

2. While G is not empty:
(a) select a node/connective @ in G without out-edges,
(b) apply C-unfolding as much as possible on node/connective @,
(c) remove @ as well as all its (in/out) edges from G.

We wish to finish this section by mentioning that there exists a wide tradition
on the use of “graphs” (and many different extensions/variants of this formal
concept) as an auxiliary data structure helping to analyze the behaviour of
systems/programs at several levels, also taking profit in practice of its deep
mathematical background. For instance, and simply focusing on termination
topics in declarative programming (which is somehow influencing our recent
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research interest), the notions of dependency graphs and size-change graphs have
been well reported in [2,6]. Fortunately, the notion of “call graph” used in this
paper is simpler than the two ones commented before, mainly due to the fact
that our final goal is easier to achieve too. Anyway, further refinements of the
present work perhaps will need a revision of such concepts.

4 Conclusions and Future Work

In this paper we were concerned with the optimization of fuzzy logic connectives
whose artificial, inefficient definitions could have been automatically produced by
previous transformation processes applied on fuzzy MALP programs. Our tech-
nique, inspired by rewriting-based unfolding, takes profit from clear precedents
in pure functional programming. In this paper we have focused on the optimiza-
tion of the proper unfolding process (initially presented in [9]) by making use of
call graphs in order to decide the ordering in which several connective calls must
be unfolded inside a concrete connective definition. For the immediate future,
we plan to implement our technique inside the fuzzy logic programming envi-
ronment FLOPER (visit http://dectau.uclm.es/floper/) we have designed
for developing applications coded with the MALP language [1,10].

References

1. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Fuzzy xpath through fuzzy
logic programming. New Generation Computing (in press), page 42, 2015.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor.
Comput. Sci., 236(1-2):133–178, 2000.

3. J.A. Guerrero and G. Moreno. Optimizing fuzzy logic programs by unfolding,
aggregation and folding. Electronic Notes in Theoretical Computer Science, 219:19–
34, 2008.

4. P. Julián, J. Medina, P.J. Morcillo, G. Moreno, and M. Ojeda-Aciego. An unfolding-
based preprocess for reinforcing thresholds in fuzzy tabulation. In Proc. of the 12th
International Work-Conference on Artificial Neural Networks, IWANN’13, pages
647–655. Springer Verlag, LNCS 7902, Part I, 2013.

5. P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjoint
Approach. Fuzzy Sets and Systems, 154:16–33, 2005.

6. C. Lee, N. Jones, and A. Ben-Amram. The size-change principle for program
termination. SIGPLAN Not., 36(3):81–92, 2001.

7. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
8. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based Unification: a multi-

adjoint approach. Fuzzy Sets and Systems, 146:43–62, 2004.
9. P.J. Morcillo and G. Moreno. Improving multi-adjoint logic programs by unfolding

fuzzy connective definitions. In Proc of the 13th International Work-Conference
on Artificial Neural Networks, IWANN 2015 Mallorca, Spain, June 10-12, pages
511–524. Springer Verlag, LNCS 9094, Part I, 2015.

10. C. Vázquez, G. Moreno, L. Tomás, and J. Tordsson. A cloud scheduler assisted by
a fuzzy affinity-aware engine. In IEEE International Conference on Fuzzy Systems,
FUZZ-IEEE 2015, Istanbul, Turkey, August 2-5, page 8 (in press), 2015.

114



Modelling the Uncertainty in the Condition Assessment of 

Residential Buildings 

Ádám Bukovics
1
, István Á. Harmati

2
, László T. Kóczy

3 

1 
Department of Structural and Geotechnical Engineering, Széchenyi István Univers i-

ty, Győr, Hungary 

bukovics@sze.hu 

2 
Department of Mathematics and Computational Sciences , Széchenyi István Univer-

sity, Győr, Hungary 

harmati@sze.hu
 

3
Department of Automation, Széchenyi István University, Győr, Hungary  

koczy@sze.hu 

3
Department of Telecommunications and Media Informat ics , BME, Budapest, Hunga-

ry 

koczy@tmit.bme.hu 

Abstract.  With the aim of ranking the residential buildings, and supporting de-

cision making for the purpose of interventions, expert opinions describing the 

status of buildings are often prepared. These, partly because of the subjectivity 

of the expert, and partly due to the quality and quantity of the available data, 

may include significant uncertainties and inaccuracy, the knowledge of which 

can influence the decisions  on interventions.  Our aim was  to elaborate a meth-

od for determining the status of buildings, which can be used to model the un-

certainties stemming from the circumstances of the examination. A fuzzy signa-

ture based method was elaborated to model the expert uncertainties.  At the 

peaks of the tree structure the singleton values, provided by the expert, are 

transformed into membership functions subject to the uncertainties, then with 

the help of aggregation operators  the status of the whole building, and the re-

lated uncertainties are determined.  The fuzzy signature set based decision sup-

port method can achieve more adequate results than those achieved with the 

traditional statistical methods. In addition to the subjective evaluation of the ex-

pert, the reliability thereof can be well expressed with fuzzy membership func-

tions. In order to make well-based decisions it is vital to know the reliability of 

the expert reports. 

Keywords: fuzzy signatures, condition assessment, uncertainty, building diag-

nostics 
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1 Introduction 

Determining the structural condition of a building, or analysing the status and ranking 

of the structures of various buildings with the aim of supporting the decision making 

for intervening purposes is a complicated task. Despite the uncertainties the condition 

of residential bu ild ings can be modelled with appropriate accuracy, buildings can be 

ranked on the basis of their condition (considering various priorities) and decision 

supporting methods can be created in a tree-structure system using a fuzzy signature 

based model. In the course of our former research we have created decision support 

and ranking methods of this type.  The aim of this work is to determine the status of 

certain building sub-structures and the buildings themselves. The singleton values and 

linguistic labels, provided by the experts for the status of building structures will be 

transformed into membership functions . When calculating the resulting membership 

function by the application of aggregation operators on the leaf “function” an add i-

tional operation is applied, to include the overall uncertainty of the evaluation of the 

building, thus the final result will be once more modified. The outcome will show to 

which extent the qualificat ions of the building structure, provided an expert  report, are 

reliable. 

2 Uncertainties of the status evaluations  

When preparing a status evaluation analysis it is not sure whether two well -prepared 

experts would give the same evaluation of the status of structures. Professional exp e-

rience and skill of the experts, completing the expert report may be different to a sig-

nificant extent this is why the status of the examined structures, defined by certain 

experts may be inaccurate. The outcome of the evaluation analysis can be significan t-

ly influenced by the circumstances of the assessment. For example it may  help to 

carry out this work, if the original design documentation of the building or a part of it 

is still available, o r the discovered conditions have been documented during a later 

renovation or assessment.. There are construction materials which  have been accepted 

and prevailing at the t ime of the construction of the building, later however disadvan-

tageous features were detected and so these are not used anymore. 

3 Grouping of uncertainties 

Based on the above, expert uncertainties were sorted into two groups. Uncertainties in 

the first group (general uncertainties) have impact on the expert evaluation in each 

case, and the expert’s subjectivity is integrated into the system. 

General uncertainties of expert evaluation (GU): 

 Partial subjectivity of expert evaluation  

 Professional skill of the expert  

 Features of the expert behaviour 

 Elaborateness (detailedness) of the expert evaluation 
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Effects, independently from the expert are sorted into the second group (special un-

certainties), when features of the membership function depend on the quality and 

quantity of input data available for the experts.. Such uncertainties are called special 

uncertainties of expert evaluation. Special uncertainties  (SUP) are further sorted into 

two sub-groups,  

Special uncertainties of expert evaluation, featuring certa in build ing sub-structures: 

 Method of checking  (destruction or visual checking) 

 Visual observability (easy to observe or hidden structural element)  

 Presence of active deteriorations  

 Quality of building materials  

 Extent to which the construction materials are accepted  

Special uncertainties of expert evaluation, featuring the whole bu ild ing (SUT): 

 Active vibration effects  

 Former design documentations (availability) 

 Date of construction  

4 Effects of uncertainties exerted on membership functions 

When modelling the expert uncertainties, to every expert estimation uncertainties are 

assigned so that the singleton membership value, p rovided by the expert, is trans-

formed into a membership function. Triangular- and trapezoidal-shaped membership 

functions will be used to model expert uncertainties, because they can be easily han-

dled, and due to the uncertainties of the building structures to be tested, membership 

functions of more complicated shape are not justified. The generation o f the member-

ship functions is as follows (Figure 1). The expert specifies a singleton value, which 

will be first normalised to [0,1] membership function will be applied around this val-

ue. It is supposed that the expert  cannot certainly define the quality of the structure. 

The shape of the membership function will be  modified  step by step, while general 

and special uncertainties of expert evaluation are taken into account. 

 

Fig. 1. Modelling the uncertainty with membership function 

117



Every uncertainty modifies the shape of the membership functions. E.g. based on the 

quality of visual observation the triangular membership function may change in a way 

described in the Figure 2. The value of  depends on the visual perceptibility of the 

structural element. In case of hidden structural elements it is e.g. =1. 

 

Fig. 2. The effect of the quality of visual observation to the membership value 

5 The structure of the fuzzy signature 

5.1 The basic structure of the fuzzy set signature  

When modelling the status of residential build ings the components are well structured 

and a hierarchical t ree-like structure can be built up from them, gain ing significant 

additional informat ion about the problem. At a higher level certain components of the 

structure are defined by a partial t ree of the components. It is a basic requirement 

towards fuzzy membership functions on the leaves of the structure that the basic set 

thereof should be within the interval of [0,1]. In  this problem a four-level fuzzy signa-

ture structure was used (Figure 3.). 

 

Fig. 3. Basic structure of the fuzzy set signature 

The membership functions at the leaves of the structure is related to the following 

building structures: foundation structures (A1), wall structures (A2), cellar floor (A3), 

intermediate floor (A4), cover floor (A5), side corridor structures (A6), step structures 

(A7), roof structures (A8), roof covering (A9), facade (A10), footing (A11), tin struc-

tures (A12), insulation against soil moisture and ground water (A13). 
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5.2 The applied aggregation operators  

To every internal node of the structure aggregation operators were assigned. Thus it 

became possible to modify  the structure so that a sub-tree of variables is reduced to 

the root of the sub-tree. Aggregation operators are calculat ing aggregated values from 

a set of values at the lower level nodes. The operation of aggregation can be specified 

with an n-variable function h: [0,1]
n
→[0,1] [4]. 

The applied aggregation operators are piecewise combinations of the min and 

weighted mean operators, which depend on the special features of the building (nu m-

ber of storeys, extend of the cellar, side corridor). For example the h2 aggregation 

operator, related to the status of the vertical load bearing structures and h7 aggregation 

operator, related to the status of the building, were defined as follows (n is the number 

of the storeys of the building). 
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6 Testing the model 

In order to test the model detailed technical-static expert reports on 340 residential 

buildings were availab le.  Using them a database was created, which on the one hand 

contained the data of building structures and building diagnostics, and on the other 

hand it contained the data needed for determining the uncertainties of status evalua-

tions.  When creating the decision support model we have relied on these data as input 

data.  The set of data, which belongs to the problem to be modelled, has a joint basic 

structure. Fine-tuning of membership functions, which handle the uncertainties  is 

performed with the help of the database. 

As an example we have chosen an old building which was built in 1894. The h u-

man expert’s opin ion was modelled by t riangular shaped fuzzy numbers, according to 

the previous sections. The values of the shape parameters are shown in the table (Fig-

ure 4). 

The final conclusion (the output of the fuzzy  signature) is a triangular shaped fuzzy 

number with parameters (0.324; 0.376; 0.428). From this membership function a crisp 

conclusion can be obtained applying one of the well-known defuzzification methods, 

but the shape of the final fuzzy set provides lot of informat ion about the uncertainty of 

the judgement, which should be taken into consideration before the decision. 
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Fig. 4. Triangular shaped fuzzy numbers 

From a mathematical point of v iew an interesting question is the sensitivity (or stabil-

ity) of the signature-based decision support method. May a small change in the input 

variables, can result a large change of the final membership function, or not? The 

answer depends on the structure of the signature and on the applied  aggregation oper-

ators. A similar question was analysed in details for the case of crisp inputs in [5] and 

[6] by using various type of inequalities [7], and the sensitivity was presented in terms 

of vector norms of change of the input. For the case of fuzzy  variab les a more sophis-

ticated approach will be needed, this is part of our planned work.  

7 Summary 

Status evaluation with the aim of decision support interventions can be ideally pe r-

formed with the use of fuzzy signatures. Within this the uncertainties of expert reports 

can be well modelled by transforming the membership values into membership fun c-

tions. Taking into account the uncertainties important additional informat ion will be 

available, which will promote appropriate decision making.  
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Abstract 

The knowledge of material corrosion behaviour is crucial in material design. 

The electrochemical techniques have been widely applied to study corrosion. 

However, these techniques involve a serial of human interpretation that may 

lead to poor quality results. This paper presents a model based on artificial neu-

ral networks (ANNs) considering Bayesian regularization (BNN) to predict pit-

ting corrosion resistance of stainless steel automatically, without resorting to 

polarization tests. Three principal environmental factors are considered: chlo-

ride ion concentration, pH and temperature. The results demonstrate the utility 

of the models to simulate the relationships between the environmental condi-

tions and the pitting behaviour of 316L stainless steel.  

Keywords. stainless steel, pitting corrosion, modelling, Bayesian neural net-

works 

1 Introduction 

Stainless steel is the term used to describe alloys containing at least 10.5% of chromi-

um. There is a wide variety of grades of stainless steels depending on the chemical 

composition and the heat treatment applied in the manufacturing process. One of the 

most common grades of stainless steel is the austenitic grade that contains 17-18% 

chromium and 8-11% of nickel [1]. These elements are the principal reason of the 

great corrosion resistance presented in this material. The corrosion resistance shown 

by this alloy is explained based on the thin oxide film formed on the surface in pres-

ence of oxygen. This layer is a result of the reaction between the oxygen in the envi-

ronment and the chromium presented in the alloy. However, in aggressive environ-

ments, the passive film may be damaged and the corrosion resistance decreases [2]. 

Therefore, two may be the principal factors to be considered in the application of 

stainless steels: the selection of the suitable grades in addition to the knowledge about 

the corrosion resistance of the alloy, depending of the environmental conditions. The 
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right selection of the material for each application provides cost saving, reducing the 

maintenance costs during the service life of the structure. 

Corrosion is one of the most critical aspects in stainless steel since it limits the ap-

plication of this material. Among all types of corrosion, pitting corrosion is the major 

cause of failure of this material since it is the principal cause of fatigue cracking initi-

ation leading to critical damage mechanisms in structures [3]. This is the reason why 

pitting corrosion remains as one of the most popular problem in electrochemistry and 

material science [4]. This type of corrosion usually occurs in the presence of chlo-

rides. The susceptibility of stainless steel to pitting corrosion depends on three princi-

pal factors: the chemical composition of the alloy, the metallurgical conditions and 

the environmental factors. Many authors have tried to analyse pitting corrosion in 

order to control and reduce this problem in a wide range of engineering applications. 

In this way, the electrochemical tests have been widely used to evaluate the corrosion 

resistance [5]. In some cases, these techniques have to be followed by a microscopic 

analysis to determine the corrosion status of the material. This visual interpretation 

may include subjectivity in the results. Therefore, in order to get an efficient control 

of corrosion in stainless steel, a reliable prediction of the corrosion behaviour is nec-

essary.  

The use of computation techniques in material science has become more popular 

leading to benefits for the analysis of the properties of different materials. In the re-

cent years, many authors have suggested applying them in order to understand the 

pitting corrosion behaviour of different materials. Cottis et al. [6] presented a model 

based on artificial neural networks (ANNs) to estimate electrochemical potentials as a 

function of solution composition and temperature. Due et. [7] used these techniques to 

analyse the effects of corrosion and fatigue cracks on the structural integrity. Bou-

cherit et al. [8] applied these models to study the usefulness of inhibitors for the pre-

vention of localised corrosion. Ramana et al. [9] presented ANN models to simulate 

the intricate inter-relationships between electrochemical potentials and different envi-

ronmental factors whereas Cavanaugh et al. [10] applied ANNs to model pit growth 

as a function of chloride ion concentration, pH and temperature.  

In this paper, with the aim to continue our studies about the prediction of the pit-

ting corrosion behaviour as function of the environmental factors [11-12], an applica-

tion of ANN using the Bayesian regularization is presented. The main goal of this 

work is understand pitting corrosion behaviour of 316L stainless steel. In this way, the 

model is presented as an effective tool to predict the pitting corrosion status of austen-

itic stainless steel automatically. The influence of the principal environmental factors 

on pitting corrosion is considered: chloride ion concentration, pH and temperature. 

2 Materials and methods 

2.1 The database 

In order to predict the pitting corrosion resistance of austenitic stainless steel the 

model was built based on the experimental data obtained from the European project 

called “Avoiding catastrophic corrosion failure of stainless steel” – (RFSR-CT-2006-
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00022). This project was developed in ACERINOX S.A. In this project, a total of 60 

patterns of grade 316L stainless steel were subjected to polarization tests to determine 

the pitting corrosion status in different environmental conditions using NaCl as pre-

cursor salt. Values of the environmental conditions in addition to the pitting corrosion 

status took part into the data set for modelling as input and output variables, respec-

tively.  

The ranges for the tested conditions were chloride ion concentration (0.0025-0.1 

mol/L), pH (3.5-8.5) and temperature (2-75 
o
C). After each polarization test, all the 

samples were analysed microscopically for evidence of localized corrosion based on 

the formation of pits on the material surface (see Fig.1). Based on this analysis, all 

species were characterized by the environmental conditions in addition to the pitting 

corrosion status: 1 for samples suffering pitting corrosion and 0, otherwise. 

 

Fig. 1. Polarization curves in sodium chloride (T = 30ºC and pH = 3.5) and microscopic analy-

sis of 316L stainless steel after polarization tests: a) no pitting attack b) pitting attack. 

2.2 Classification model 

The universal approximation property shown by the artificial neural networks makes 

this technique a promising alternative to be applied for pattern recognition purpose 

[13]. A neural network is made up of a number of processing elements called neurons 

organized in different layers: the first layer that receives the information from the 

external world is called the input layer, the last layer named the output layer and the 

layers between the input and the output ones called the hidden layers. All the neurons 

in each layer are connected to others by means of direct links. These connections are 

associated with the adjustable parameters called weights. The values of these parame-

ters are adjusted in order to reduce the error between the output provided by the mod-

el and the target value for the entire data set [14], see equation (1). This process is 

known as supervised learning [15]  

 
1

1
( ) ( )

2 

 
N

D i i
i

E w y t   (1) 

Where ti and yi are the target and experimental outputs, respectively. 

The multi-layer feedforward is the most common structure used for neural net-

works. Although the universal approximation property shown by ANNs, there may 

appear some problems in its implementation such as the selection of the optimal num-

ber of hidden neurons, the influence of the initial weight values selected randomly or 
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the way to avoid overfitting. To deal with these disadvantages, the Bayesian learning 

strategy was proposed. In this methodology, the weights involved in the model are 

settled down based on the Bayes’ theorem where the posterior knowledge is obtained 

from the prior assumptions based on the training data. The evidence framework pro-

posed by Mackay is one of the most popular example implementation of the Bayesian 

theorem [16-17]. This method adapts the prior probability distribution into posterior 

probability distribution based on the patterns taking part into the training set. The 

Bayesian regularization approach assigns a probabilistic nature to the weights in order 

to get the optimal structure for the model. This technique reduces the overfitting since 

too excessive complex models are penalized improving the generalization ability. In 

this case, the posterior distribution of the network weights is based on Gaussian ap-

proximation and the complexity of the neural network is controlled by means of regu-

larization technique. Basically, Bayesian neural network can be defined as a back 

propagation network where an additional term in the error function is considered.  

These terms, introduced by Tikhonov [18] are called the regularization parameters 

and penalize the network complexity, see equation (2): 

 ( ) · ( ) ( )   
D W

S w E w E w   (2) 

where the terms  and are called the regularization parameters. In order to get 

smoother network mappings, the penalty term (Ew) in the equation (3) penalizes the 

weight values that lead to an excessive curvature in the model.  

The ratio  /controls the effective complexity of the network. Thus, the correct 

selection of this ratio is critical within the regularization method. In the Bayesian 

framework, the weights of the networks are selected based on the maximization of the 

conditional probability. Assuming a Gaussian distribution for the probabilities, the 

terms  and can be defined as: 
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In these equations, the term  x
MP

 represents the weights that maximize the posterior 

density and isthe effective number of parameters given by: 

 12 ( )MP MPn tr H     (5) 

where H
MP

 is the Hessian matrix evaluated at x
MP

 and n is the total number of pa-

rameters. 

3 Experimental procedure 

In this paper, a three-layer feedforward artificial neural network based on the Bayesi-

an regularization (BNN) was presented to predict the pitting corrosion behavior of 

austenitic stainless steel. The topology of the model consisted of three units in the 
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input layer corresponding to the environmental factors and two neurons in the output 

layer related to the pitting corrosion status for each sample. The number of neurons in 

the hidden layer was chosen empirically varying from 1 to 20. The values of the 

weight and bias were adjusted according to the optimization algorithm of Levenberg-

Marquadt [15]. In order to improve the training process, the original data set was 

normalized within the range [-1,1]. In this way, the error was reduced by scaling the 

variables. On the other hand, 5-fold cross validation technique was applied to validate 

the model. This procedure divides the original data set into 5 different groups: 4 of the 

sets (80% of the original patterns) were used to create the model, whereas the remain-

ing group (20% of the original patterns) was applied to test the model. The perfor-

mance index values were obtained taking the average of all repetitions (20 times) for 

each configuration in order to select the model with the best generalization capability. 

4 Results and discussion 

In order to select the optimal structure for the model, different statistic metrics have 

been measured for all the configurations [18]:  

 TP
Sensitivity

TP FN
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Where TP is the corrosion patterns classified correctly and FP is the corrosion pat-

terns misclassified. TN is the no-corrosion patterns classified correctly and FN, the 

no-corrosion patterns wrong classified. The results were collected in Fig. 2.  

 

 

Fig. 2. Boxplot for the statistic metrics evaluated to analyze the influence of the number of 

hidden neurons on the classification performance: a) sensitivity, b) specificity, c) precision d) 

accuracy. 
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Based on the high values for the performance indices represented in the figure, it can 

be reflected the capacity of the BNN models to predict pitting status of 316L under 

different environmental conditions. However, in order to determine the optimal con-

figuration model, the use of the Receiver Operating Characteristics (ROC) space was 

presented [19]. This analysis is evaluated by plotting the true positive fraction (sensi-

tivity) versus the true negative fractions (1-specificity), see Fig.3. In this way, each 

model can be represented by a point on a 2-D plot. Therefore, the best models are 

those located closest to the upper left corner. 

 

According to Fig.3, the best configurations may be the models with 2 or 5 hidden 

neurons since these models were the closest to the upper left corner. Considering both 

configurations, the optimal model can be selected according to the Occam razor’s: the 

best model is the simplest one. Based on this principle, the optimal configuration for 

the BNN model to predict pitting corrosion status of austenitic stainless steel was 

obtained using two hidden neurons. 

 

 

Fig. 3. Sensitivity and specificity plotted in ROC space for models to predict pitting corrosion 

behavior 

This model provided excellent results with notable precision (90.7%). Fig. 4 depicts the 

pitting corrosion modelling of 316L stainless steel by using BNN with 2 hidden neu-

rons. 

 
Fig. 4. Corrosion prediction modelling using BNN (3:2:2). Points in red are original cor-

rosion patterns whereas points in blue are original no-corrosion patterns. The borderline be-

tween the corrosion and no corrosion patterns predicted by the model is represented. 
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5 Conclusions 

The knowledge of the influence of the environmental conditions on the pitting corro-

sion behaviour of stainless steel is a critical task. The electrochemical tests are used to 

evaluate pitting corrosion susceptibility of the materials. However, the human inter-

pretation in the microscopic analysis of the material surface, needed after the tests, 

leads to subjectivity in the results. To deal with this drawback, a model based on 

ANN using the Bayesian regularization was presented in this work in order to predict 

pitting behaviour. The results demonstrated the utility of the proposed method to be 

considered as alternative to electrochemical tests in order to predict corrosion behav-

iour of stainless steels automatically. The BNN with two hidden neurons allowed the 

prediction of the pitting corrosion behaviour by an automatic way with notable values 

of precision (90.7%). This model was presented an effective tool to analyse the pitting 

corrosion resistance of stainless steel according to the environmental conditions.  
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Abstract. Many problems in engineering require to determine the spa-
tial distribution of electric currents flowing on a conductive surface,
which must satisfy some given requirements for the produced fields, elec-
tromagnetic energy, etc. The reconstruction of current distribution on the
conducting surface subjected to these constraints is an inverse problem,
which when formulated using boundary element methods can be posed
as a convex optimisation. Here we present a convex optimisation frame-
work to tackle problems in Bioengineering, that permits the prototyping of
many different cost functions and constraints. Several examples of MRI
gradients and TMS coils were designed and simulated to demonstrate the
validity of the proposed approach.

Keywords: Convex optimisation, Boundary element method, Bioengi-
neering, Field synthesis

1 Introduction

Magnetic Resonance Imaging (MRI) has become an invaluable tool for diagnostic
medicine. It is based on the use of well defined and controlled magnetic fields,
as the magnetic field gradients, used to encode spatially the signals from the
sample. These field gradients are generated by coils of wire, usually placed on
cylindrical surfaces, although other geometries can be employed [1].

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to
stimulate the brain [2], which is applied to studies of cortical effective connec-
tivity, presurgical mapping, psychiatric and medical conditions, such as major
depressive disorder, schizophrenia, bipolar depression, post-traumatic, stress dis-
order and obsessive-compulsive disorder, amongst others. In TMS, a strong, brief
current pulse driven through a coil is used to induce an electric field stimulating
neurons in the cortex.

The problem in MRI gradient coil and TMS coil design is to find optimal
positions for the multiple windings of coils so as to produce fields with the desired
spatial dependence and properties (low inductance, high gradient to current
ratio, minimal resistance, good field gradient uniformity, high focality and field
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penetration depth, etc.). We refer the reader to [1]-[3] for a wider perspective on
these topics.

TMS and MRI coil design are then two examples of problems in bioengineer-
ing where is required to determine the spatial distribution of electric currents
flowing on a conductive surface, which satisfies given requirements for the pro-
duced fields, electromagnetic energy, etc.

An appropriate and realistic formulation of this type of problems can be
achieved by using a boundary element method (BEM), and incorporating the
idea of stream function. The current density in the surface is then a vector field
that is piecewise uniform (see [4, 6]). By using this current model, electromag-
netic inverse problems, such as MRI and TMS coil design, can be formulated as
a constrained optimization.

In this work, we present a convex optimisation framework for the solution of
electromagnetic inverse problems in Bioengineering, such as MRI gradient and
TMS coil design problem, allowing the prototyping of many different cost func-
tions and constraints. Two examples of gradient and TMS coils were designed
and simulated to demonstrate this method, and prototypes coils were built and
tested to validate it.

2 Physical Model

A model of the current under search can be achieved by using a boundary element
method (BEM), that allows the current distribution to be defined in terms of
the nodal values of the stream function and elements of the local geometry (see
[4]).

So let us assume that the surface, S, on which we want to find the optimal
current, is divided into T triangular elements with N nodes, which are lying at
each vertex of the element. We can then note the vector containing the nodal
values of the stream function as ψ ∈ RN , which is going to be the optimization
variable in this work.

The use of this current model allows the discrete formulation of all the mag-
nitudes and physical properties of the coil involved in the design. All problems
tackled here are convex and can be generalised as

{
minimise f0(ψ)
subject to fi(ψ) ≤ bi, 1 ≤ i ≤ m (1)

where fi : Rn → R are convex functions for i = 1, ...,m.

3 MRI

3.1 Minimum inductance (stored energy) coil

The quality of the MRI images strongly depend on how linear the variation of
the field is with position. Analogously, in order to improve the image formation
process ideal coils should have a minimum inductance, which can be related to
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the stored magnetic energy and dictates the speed at which current can be put
into the coil.

The problem of designing a MRI gradient coil with good field gradient uni-
formity and minimum inductance can be posed as [4]





minimise ψTLψ

subject to
‖Bzψ − bt‖∞
‖bt‖∞

≤ Dmax

where

• H ∈ N, with N > H, is the number of points where the target field is defined.
• Bz ∈ RH×N is a known matrix, where the coefficient Bz(i, j) is the z-

component of the magnetic induction produced by the current element as-
sociated to the jth-node in the prescribed ith-point.
• bt ∈ RH is the target field, prescribed in the H points.
• L ∈ RN×N is the inductance matrix, which is symmetric and positive-

definite.
• The magnetic field is required to deviate by less than a given value from

linearity, usually Dmax ∼ 5%.

4 TMS

4.1 Minimum stored energy coil

Power requirements often limit the duration and frequency of repetitive TMS,
for example, via coil heating. Thus, an ideal TMS coil should produce a strong
stimulation of a prescribed region, and a minimum electric field in the rest of
non target regions; and have a minimum stored magnetic energy.

The problem of designing a TMS coil that produces a maximum field in a
target region with minimum stored energy can be posed as

{
maximise ‖Bψ‖2
minimise ψTLψ

(2)

where

• H ∈ N, with N > H, is the number of points where the target field is defined.
• B ∈ RH×N is a known matrix, where the coefficient B(i, j) is the modulus

of the magnetic induction produced by the current element associated to the
jth-node in the prescribed ith-point.
• bt ∈ RH is the target field prescribed in the H points, which in TMS can be

considered constant, that is, bt(i) = bt(j) for all i, j = 1, ...,H.
• L ∈ RN×N is the inductance matrix, which is symmetric and positive-

definite.
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This type of problem is also known as Tikhonov regularised minimisation.
According to Subsection 5.6 and 1 of Corollary 1, this problem can be equiva-
lently written as

{
maximise

∥∥(BC−1
)
ψ
∥∥
2

subject to ‖ψ‖2 = 1

where L = CTC is the Cholesky decomposition of the inductance matrix L
(which is symmetric and positive-definite).

Other admissible reformulations (see 2 of Corollary 1) are

{
minimise ‖ψ‖2
subject to

∥∥(BC−1
)
ψ
∥∥
2

=
∥∥(BC−1

)∥∥
2

or more generally

{
minimise ‖ψ‖2
subject to

∥∥(BC−1
)
ψ − bt

∥∥
2

=
∥∥(BC−1

)∥∥
2

for bt constant.

5 Results

5.1 MRI
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Fig. 1. a) equivalent numerical model of coil in Fig. 5.1 (red and blue colors are used
to indicate wires in which there is a different sense of current flow). b) Photograph
of the constructed prototype coil. c) Contours of the Bz field produced by the wire
arrangement Fig 5.1. The grey line delineates the region where the field deviates by
less than 5% from linearity.
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A prototype cylindrical transverse MRI gradient coil has been designed using
the proposed convex framework (Fig. 5.1), it corresponds to a minimum induc-
tance transverse cylindrical coil of radius 4.5 cm and height 18 cm, designed to
produce a field gradient which deviates from linearity by less than 5% within
a central, uniform distribution of 400 points spread over a sphere of radius of
3.5 cm. This prototype coil has been constructed using a variable track width
produced in a flexible printed circuit board (PCB), where the copper thickness
was 35 µm. The former on which the prototype tracks were laid was a cylinder
of polyvinylchloride (PVC) with 3.4 mm thickness.

Figure 5.1 shows the gradient coil prototype, that when was connected to
6.0 A DC current supply (Agilent U8031A, USA), produces the magnetic field
in Fig. 5.1. This coil when energized produce the Bz field displayed in Fig. 5.1,
which satisfies the initial requirements, as we can see the target region is within
the grey line that delineates the volume where the field deviates by less than 5%
from linearity.

5.2 TMS

The proposed approach has also been used to produce a TMS stimulator on a
rectangular former of dimensions 20 cm × 10 cm, designed to have minimum
stored energy and to maximize the magnetic field in a prescribed spherical vol-
ume of interest of radius 2.0 cm that is centred 4.0 cm below the center of the
coil plane, as shown in Fig. 5.2 where the coil solution is also depicted.

In order to validate the proposed solution, we manufactured the correspond-
ing prototype coil, which was wound with 1.5 mm thick continuous copper wire,
Fig. 5.2. This TMS prototype when connected to 6.0 A DC current supply (Agi-
lent U8031A, USA), produces the magnetic field in Fig. 5.2, which was measured
using a magnetic flow sensor MAG 3100. The results obtained here indicates that
the prototype TMS coil produces a remarkably high magnetic field in the target
volume that decreases rapidly out of the volume.

5.3 Numerical Implementation

Software was written in Fortran 90 to tackle the problems presented here, and the
produced optimal solutions were found in good agreement with those generated
using software for convex programming such us CVX [7] The Fortran 90 software
also includes subroutine that allows the testing of the coil designs, as it calculates
the field produced by the wire pattern via Biot-Savart integration.

5.4 Conclusion

Here we present a convex optimisation framework to tackle problems in Bioengi-
neering. This is a powerful approach for designing of MRI gradient, and novel
method for the generation of TMS coils wounds on arbitrarily shaped surface.

The method has been experimentally validated by constructing and testing
prototype coils, where the magnetic fields produced show the accuracy of the
proposed technique.
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Fig. 2. a) Schematic diagram showing the TMS coil solution and along with the region
of interest in which the desired magnetic field must be maximized. b) Photograph of the
constructed TMS prototype coil and the experimental set up to measure the magnetic
field with the flow sensor MAG 3100. c) Magnetic field modulus in a 20 cm × 20 cm
plane which is centred 4.0 cm below the center of the coil plane.)
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Appendix: Mathematical foundations of the previous
models

This appendix is devoted to provide the mathematical foundations needed to
express the previous problems in the form given in Equation (1).
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5.5 Brief introduction and background

Let A be an H × N matrix and consider a norm ‖ · ‖ in RN . For every ε ≥ 0
we can consider the closed ‖ · ‖-ball of center 0 and radius ε, which is a compact
subset of RN :

B‖·‖(0, ε) = {ψ ∈ RN : ‖ψ‖ ≤ ε}.
When ε = 1 then we will simply write B‖·‖ in lieu of B‖·‖(0, 1). It is obvious that
B‖·‖(0, ε) = εB‖·‖ for all ε ≥ 0.

It can be proved that the sup of A on the previous ball is attained at an
element of its sphere. In other words,

max{‖Aψ‖ : ‖ψ‖ ≤ ε} = max{‖Aψ‖ : ‖ψ‖ = ε} = sup{‖Aψ‖ : ‖ψ‖ < ε}.
We will denote by exp(A, ε) to the set of all those elements of the sphere of

the ball above at which the previous max is attained. In other words,

exp‖·‖(A, ε) :=
{
ϕ ∈ B‖·‖(0, ε) : ‖Aϕ‖ = max{‖Aψ‖ : ‖ψ‖ ≤ ε}

}
.

Again, when ε = 1 we will write exp‖·‖(A) instead of exp‖·‖(A, 1). On the other
hand, note that exp‖·‖(A, ε) = ε exp‖·‖(A) for all ε ≥ 0.

The norm of the matrix A is by definition ‖A‖ := max{‖Aψ‖ : ‖ψ‖ ≤ 1} =
max{‖Aψ‖ : ‖ψ‖ = 1} and thus the elements of exp‖·‖(A) are precisely the

vectors of RN at which A attains its norm (these vectors will be called the
supporting vectors of A). It can be proved that ‖Aχ‖ ≤ ‖A‖‖χ‖ for all χ ∈ RN .

Recall that a (real) scalar product on RN is defined by a positive-definite
symmetric matrix P as (ϕ,ψ) := ϕPψ. This scalar product makes RN a Hilbert

space whose norm is ‖ϕ‖P := (ϕ,ϕ)
1
2 . It is well known among the functional

analysts that all the Hilbert spaces of the same dimension are linearly isometric,
which means that there exists a surjective linear isometry TP :

(
RN , ‖ · ‖P

)
→(

RN , ‖ · ‖2
)
. If we keep denoting by TP to the matrix associated to the isometry

TP , then ‖TPψ‖2 = ‖ψ‖P for all ψ ∈ RN . In matrix theory, the expression of
TP is given by the Cholesky decomposition of the symmetric positive-definite
matrix P , that is, P = LTL. Indeed, notice that

‖TPψ‖22 = ‖ψ‖2P = ψTPψ = ψT (LTL)ψ = (Lψ)T (Lψ) = ‖Lψ‖22
which means that we can take TP := L.

5.6 Uniformizing norms

Consider the optimization problem given in Equation 2
{

max ‖Bψ‖2
minψTLψ

ψ ∈ RN

If we assume that L is symmetric and positive-definite, then there exists a matrix
TL such that ψTLψ = ‖TLψ‖2. Therefore, the above problem becomes

{
max ‖Bψ‖2
min ‖TLψ‖2 ψ ∈ RN
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Taking into consideration that TL is invertible, we can rewrite it as

{
max ‖Aϕ‖2
min ‖ϕ‖2 ϕ ∈ RN

where A := BT−1L .

5.7 Turning maximization problems into minimization problems
(without losing convexity)

The following results throws some light on the problem described in Equation
(2) in the sense that conjugation of the two conditions of maximization and
minimization makes it an unsolvable problem.

Theorem 1. Let A be an H × N matrix and consider a norm ‖ · ‖ in RN .
Consider the optimization problem

{
max ‖Aϕ‖
min ‖ϕ‖ ϕ ∈ RN

1. There does not exist ϕ ∈ RN such that, for all ψ ∈ RN , ‖Aϕ‖ ≥ ‖Aψ‖ and
‖ϕ‖ ≤ ‖ψ‖.

2. There are infinitely many ϕ ∈ RN such that, for all ψ ∈ RN , either ‖Aϕ‖ ≥
‖Aψ‖ or ‖ϕ‖ ≤ ‖ψ‖. These solutions are the elements of the set

⋃

ε≥0
exp‖·‖(A, ε).

Proof.

1. Suppose to the contrary that there is ϕ ∈ RN such that ‖Aϕ‖ ≥ ‖Aψ‖ and
‖ϕ‖ ≤ ‖ψ‖ for all ψ ∈ RN . Since ‖ϕ‖ ≤ ‖ψ‖ for all ψ ∈ RN we must have
that ϕ = 0 which then contradicts that ‖Aϕ‖ ≥ ‖Aψ‖ for all ψ ∈ RN since
Aϕ = 0.

2. In the first place, assume that there exists ϕ ∈ RN such that ‖Aϕ‖ ≥ ‖Aψ‖ or
‖ϕ‖ ≤ ‖ψ‖ for all ψ ∈ RN . We will show that ϕ ∈ exp‖·‖(A, ε) for ε := ‖ϕ‖.
Indeed, let ψ ∈ RN such that ‖ψ‖ < ε (= ‖ϕ‖). Then by assumption ‖Aϕ‖ ≥
‖Aψ‖, which means that ‖Aϕ‖ ≥ sup{‖Aψ‖ : ‖ψ‖ < ε} = max{‖Aψ‖ :
‖ψ‖ ≤ ε} ≥ ‖Aϕ‖ since the open ball {ψ ∈ RN : ‖ψ‖ < ε} is dense in the
closed ball {ψ ∈ RN : ‖ψ‖ ≤ ε}. As a consequence, ϕ ∈ exp‖·‖(A, ε).
Conversely, we will show that every ϕ ∈ exp‖·‖(A, ε) verifies that ‖Aϕ‖ ≥
‖Aψ‖ or ‖ϕ‖ ≤ ‖ψ‖ for all ψ ∈ RN . Indeed, fix any ψ ∈ RN . If ε ≤ ‖ψ‖,
then we are done because ‖ϕ‖ = ε. If ε > ‖ψ‖, then we conclude that

‖Aϕ‖ = max{‖Aχ‖ : ‖χ‖ ≤ ε} ≥ ‖Aψ‖.
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Corollary 1. Let A be an H ×N matrix and consider a norm ‖ · ‖ in RN . The
optimization problem {

max ‖Aϕ‖
min ‖ϕ‖ ϕ ∈ RN

is equivalent to any one of the following:

1. The optimization problem
{

max ‖Aϕ‖
‖ϕ‖ = 1

ϕ ∈ RN

which consists of finding the elements of exp‖·‖(A), that is, the elements of

RN at which A attains its norm.
2. The convex optimization problem

{
min ‖ϕ‖
‖Aϕ‖ = ‖A‖ ϕ ∈ R

N

which again consists of finding the supporting vectors of A.

Proof.

1. In accordance to Theorem 1, the solutions to the optimization problem
{

max ‖Aϕ‖
min ‖ϕ‖ ϕ ∈ RN

are the elements of the sets
⋃

ε≥0
exp‖·‖(A, ε).

Since exp‖·‖(A, ε) = ε exp‖·‖(A) for all ε > 0, it suffices to find the supporting
vectors of A, that is, the elements of exp‖·‖(A), which are precisely the
solutions to the {

max ‖Aϕ‖
‖ϕ‖ = 1

ϕ ∈ RN

2. All we need to show is that the solutions to the convex optimization problem
{

min ‖ϕ‖
‖Aϕ‖ = ‖A‖ ϕ ∈ R

N

are the supporting vectors of A. Indeed, let ϕ ∈ exp‖·‖(A). If ψ ∈ RN and
‖Aψ‖ = ‖A‖, then we have that

‖ϕ‖ = 1 =
‖Aψ‖
‖A‖ ≤

‖A‖‖ψ‖
‖A‖ = ‖ψ‖

which implies that ϕ is a solution of the convex minimization problem.
Conversely, let ϕ a solution of the convex minimization problem. We will
prove that ϕ ∈ exp‖·‖(A). By assumption, ‖Aϕ‖ = ‖A‖ so all we need to
show is that ‖ϕ‖ = 1. Indeed, it suffices to consider any ψ ∈ exp‖·‖(A). Since
‖Aψ‖ = ‖A‖ we have that ‖ϕ‖ ≤ ‖ψ‖ = 1. The other inequality follows from
the fact that ‖A‖ = ‖Aϕ‖ ≤ ‖A‖‖ϕ‖.
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Abstract. In this paper we present a formalization of basic operations
on matrices in the ACL2 theorem prover, including addition, product,
transpose, and inverse of matrices. We define these operations and give
proofs of their main properties. The main result is an ACL2 implementa-
tion and formal verification of the Gauss-Jordan algorithm for computing
the inverse of a matrix. Our formalization is based on abstract stobjs, an
ACL2 feature allowing both convenient logical reasoning and execution
efficiency. In fact, we get quite good execution time response for big ma-
trices of several hundred thousands elements. The complete formalization
can be found in [1].

1 Formalizing matrices in ACL2

The ACL2 system [4] is both a programming language, a logic for reasoning
about programs defined in the language, and a mechanical theorem prover to
assist in the proof process. The programming language is an extension of an
applicative subset of Common Lisp and the logic is quantifier-free, first-order
with equality, including a rule of inference of proof by structural induction. See
[2] for a detailed description of ACL2.

ACL2 has been widely used in formal validation of hardware algorithms and
in many math fields. As for matrix algebra, a previous work is [3], where a
formalization of the Strassen algorithm for matrix multiplication is presented,
using applicative record structures. Also, in [5] a number of operations (including
inverse) are defined and some of their properties proved, using ACL2 bidimen-
sional arrays. Since one of our main concerns is to improve execution efficiency, it
is tempting to apply some interesting ACL2 features designed for that purpose,
in a formalization of matrix algebra. Among these features are stobjs (for Single
Threaded OBJects) and abstract stobjs.

In principle, if we use a list-based representation of matrices, accessing and
updating cannot be done in constant time, because we need copying, as usual
in an applicative setting. This feature is critical if we want to define algorithms

? This work was partially supported TIN2013-41086-P project (Spanish Ministry of
Economy and Competitiveness), cofinanced with FEDER funds
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dealing with big matrices. Fortunately, ACL2 stobjs allow lookups and (destruc-
tive) updates in constant time. When an object is declared to be single-threaded,
ACL2 enforces certain syntactic restrictions on its use, ensuring that only one
copy of the object is ever needed. In this way, this efficient data structure is
consistent with the applicative semantics of ACL2.

Stobjs are structures composed by fields. These fields can store a single data
or unidimensional arrays. But a matrix is intuitively represented by a two-
dimensional array. For example, element aij of matrix A maps to element of
the ith-row and jth-column. This use of two indices to access matrix elements
is so extended in mathematics that we should preserve it in our formalization.

But here arises the very first problem: currently stobj’s only allow one-
dimensional arrays, so we define this stobj in ACL2 (the suffix “...$c” stands
for concrete and will be explained later):

(defstobj matrix$c

(m$c :type (array rational (1)) :initially 0 :resizable t)

(nrows$c :type (integer 1 *) :initially 1)

(ncolumns$c :type (integer 1 *) :initially 1))

Where m$c is the one-dimensional array that supports matrix elements,
nrows$c and ncolumns$c gives us the number of rows and columns of the matrix
defined above.

From the :LOGIC point of view a stobj will be represented by means of a list
(made with conses) of elements. Also an array field of an stobj, from the logic
point of view, is represented as a list of elements. For example, if we have A the
following 2× 3 matrix, in the logic we would have the representation:

A =

(
1 2 3
4 5 6

)
−→ ((1 2 3 4 5 6) 2 3)

If we denote c the number of columns of A, r the number of rows of A and B
the contents of the array field, it’s easy to see the following mappings between
elements in both representations:

1. aij 7→ bi·c+j

2. bk 7→ abk/rc,k mod r

So in the :LOGIC we would have to reason with this additional disadvantage
of dealing with these mappings. This would increase the difficulty of our proofs
and decrease their clarity. Fortunately, abstract stobjs allows us to use stobj in
the :EXEC world but two-dimensional access in :LOGIC world.

1.1 Abstract stobj’s in ACL2

Abstract stobj’s (as opposed to concrete stobj’s) is a relatively new ACL2 feature
introduced in [6]. An abstract stobj provides an alternative logical representation
of a concrete stobj. That is, we can define a simpler logical representation of
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the concrete stobj in order to abstract its complexity in terms of reasoning. In
our case, we will be able to give a natural and two-dimensional access matrix
representation in the :LOGIC and a more complex but efficient one-dimensional
array representation in the :EXEC for our matrices.

We introduce an abstract stobj using the defabsstobj event. Two functions
are needed in this event: a recognizer and a correspondence function. In order
to be finally admitted, some proof-obligations are generated:

1. :correspondence. Theorems establishing that abstract and concrete stobj’s
represent the same inner values in the terms of the correspondence function.

2. :preserved. Theorems that prove that updaters maintains the recognizer
function.

3. :guard-thm. Theorem proving that guards are verified in every call in the
:EXEC world.

These proof-obligations have to be proved once and for all, ensuring that the
logical correspondence between the abstract stobj and its associated concrete
stobj is preserved. So we can define the following abstract stobj:

(defabsstobj matrix

:concrete matrix$c

:recognizer (matrixp :logic matrix$ap :exec matrix$cp)

:creator (create-matrix :logic create-matrix$a

:exec create-matrix$c)

:corr-fn matrix$corr

:exports ((nrows :logic nrows$a :exec nrows$c)

(ncolumns :logic ncolumns$a :exec ncolumns$c)

(lookup :logic lookup$a :exec lookup$c)

(update :logic update$a :exec update$c)

(redim :logic redim$a :exec redim$c)))

Where the suffix “...$a” stands now for abstract. We can see here the primi-
tives defined for our matrix object where their names (nrows, ncolumns, and so
on) are some kind of self-explanatory about its behaviour. Let’s see with some
detail the function (lookup A i j), that returns the aij element. We must de-
fine the :EXEC and :LOGIC version of lookup:

(defun lookup$c (matrix$c i j)

(m$ci (+ (* i (ncolumns$c matrix$c)) j) matrix$c))

(defun lookup$a (matrix$a i j)

(nth j (nth i matrix$a)))

So to establish that lookp$c and lookup$a return the same value we must
prove the following theorem in ACL2 (we have removed some not relevant con-
ditions in the clause for the sake of clarity):
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(defthm lookup{correspondence}

(implies (matrix$corr matrix$c matrix)

(equal (lookup$c matrix$c i j)

(lookup$a matrix i j))))

This theorem can be read as follows: “if matrix$c and matrix correspond
to each other, lookup will return the same value”. Once this is proved, we can
use the primitives with the desired logic interface. The rest of the functions that
use matrices must do it by means of those primitives.

2 Defining operations over matrices

We have defined some operations over matrices using, as explained, the given
primitives in the defabsstobj event described above. Experience in the use of
ACL2 prover tells us that the way one defines functions can dramatically change
proofs complexity, so we tried to define functions in such a simple way that
principle of induction could perform quite well.

For example, we can define the matrix addition like this:

(defun add-matrix-row (A B m n)

(if (zp n)

(update A m 0 (+ ( lookup A m 0) ( lookup B m 0)))

(seq A

(update A m n (+ (lookup A m n)

(lookup B m n)))

(add-matrix-row A B m (1- n)))))

(defun add-matrix-rows (A B m n)

(if (zp m)

(add-matrix-row A B 0 n)

(seq A

(add-matrix-row A B m n)

(add-matrix-rows A B (1- m) n))))

(defun add-matrix (A B)

(add-matrix-rows A B (1- (nrows A))

(1- (ncolumns A))))

So, add-matrix-row adds the elements of m row, from 0 to n column. The
next function, add-matrix-rows, note the plural, adds rows from 0 to m, and
each of this, from column 0 to n. Finally, we have add-matrix function, that
only makes first calling to last function with proper arguments to start the
computation. This way of defining functions can be considered as a pattern that
can be applied to other functions such as matrix equality, transposed matrix,
matrix product and so on.
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It turns out that this recursive pattern is specially well-suited when we prove
properties of these functions by induction. That is, first we prove the property
on only a given row of the matrix, by induction in the number of columns.
Afterwards we prove it in a subset of rows of the matrix, to finally be able to
prove it for the whole matrix. It is worth mentioning that almost every property
(with some hard exceptions) can be proved in this way.

2.1 List of some proved properties

We now list some of the main properties proved in our formalization. For details,
see the whole formalization in [1].

Transposition
(AT )T = A
ITn = In

Opposite
−(−A) = A
(−A)T = −(AT )

Scalar product
α · (β ·A) = (α · β) ·A
0 ·A = ∅
α · ∅ = ∅
1 ·A = A
−1 ·A = −A
(α ·A)T = α ·AT

(α ·A)T = α ·AT

α · (−A) = −(α ·A)

Addition
A+B = B +A
(A+B) +C = A+ (B+C)
A+ ∅ = A
∅+A = A
A+ (−A) = ∅
−(A+B) = −A+ (−B)
(α+ β) ·A = αA+ βA
α(A+B) = αA+ αB
A+A = 2A
(A+B)T = AT +BT

A+B = ∅ → A = −B
−A+A = ∅

Product
A · ∅ = ∅
∅ ·A = ∅
In ·A = A
A · In = A

(A ·B) · C = A · (B · C)
A · (B +C) = A ·B +A ·C
(A+B) ·C = A ·C +B ·C
−A ·B = −(A ·B)
A · (−B) = −(A ·B)
A · (α ·B) = α · (A ·B)
(α ·A) ·B = α · (A ·B)
(A ·B)T = BT ·AT

Row operations
FiiA = A
FijIn ·A = FijA
FijB ·A = Fij(B ·A)
Fi(α)In ·A = Fi(α)A
Fi(α)B ·A = Fi(α)(B ·A)
Fij(α)In ·A = Fij(α)A
Fij(α)B ·A = Fij(α)(B ·A)

Where:

– A,B,C: Matrices of arbitrary dimensions.
– α, β: Arbitrary scalars.
– ∅: Matrix of arbitrary dimensions where all the elements are 0.
– In: The nth-order identity matrix.
– FijA: Swaps rows i and j of matrix A.
– Fi(α)A: Multiply i row of matrix A by α.
– Fij(α)A: Adds, to i row of matrix A, the j row multiplied by α.

2.2 Gauss-Jordan algorithm implementation

Using the above row transformations Fij , Fi(α) and Fij(α), we can implement
the Gauss-Jordan algorithm to get the inverse of a matrix. The main idea is that
we begin with the (composed) matrix (In|A) and we apply a sequence of row
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transformations, trying to transform the matrix A to In. We have proved that
if the final result of these operations is the composed matrix (B|C) and C = In,
then B ·A = In, and, therefore, B = A−1. That is we have defined and formally
verified a Gauss-Jordan based algorithm for computing the inverse of a matrix.

Abstract stobjs turns out to be crucial for the whole formalization. They
allow us to reason about the algorithm as if it were executed on a bidimensional
and intuitive representation of matrices, although actually is executed using the
more efficient (but more complex) unidimensional, stobj based, representation.

2.3 Execution efficiency

We have tested our implementation computing the main operations (addition,
multiplication and inverse) on randomly generated matrices. For example, we
compute the sum of matrices of dimensions up to n = 1000, product for dimen-
sions up to n = 300 and inverse of matrices of dimensions up to n = 100. We
compared our execution time with the execution time obtained using the imple-
mentation in [5]. We also compared memory allocation in both implementations.

Our implementation outperforms the implementation in [5] in all cases. In
the case of addition and product, our implementation is more than three times
faster. In the case of the inverse, although the execution times are more similar,
our implementation is still about 20% faster. In the next tables we can see
measured execution times for sum (left) and product (right) of matrices (all
times in seconds):

Dimension Stobj’s Gamboa
100 0,00 0,01
200 0,00 0,04
300 0,01 0,20
400 0,01 0,26
500 0,01 0,35
600 0,02 0,66
700 0,02 0,83
800 0,03 1,34
900 0,03 1,93
1000 0,04 2,67

Dimension Stobj’s Gamboa
30 0,00 0,01
60 0,01 0,03
90 0,03 0,06
120 0,07 0,16
150 0,10 0,25
180 0,18 0,43
210 0,28 0,69
240 0,39 1,05
270 0,56 1,60
300 0,78 2,01
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Abstract. In molecular biology, the subject of protein structure pre-
diction is of continued interest, not only to chart the molecular map of
living cells, but also to design proteins with new functions. In this work a
Preference-Based Genetic Algorithm (PBGA) is proposed aiming to op-
timise NK Landscape based benchmarks designed and shown to mimic
the properties of the protein Inverse Folding Problem (IFP). The PBGA
algorithm incorporates a weighted sum model in order to combine fitness
and diversity into a single objective function scoring a set of individuals
as a whole. By adjusting the sum weights, a direct control of the fitness
vs. diversity trade-off in the algorithm population is achieved by means
of a selection scheme iteratively removing the least contributing individ-
uals. Experimental results demonstrate the better performance of the
PBGA algorithm compared to other state-of-the-art algorithms both in
terms of fitness and diversity.

1 Introduction

Protein engineering in general aims at designing molecules with desired proper-
ties. A method allowing to successfully design such molecules would find applica-
tions in a number of areas such as designing improved enzymes for biotechnology
applications or new antibodies towards already known targets. However evalu-
ating and therefore optimising real biological instances is very computationally
demanding. A novel approach recently proposed by Nielsen et al. consists in
an NK Landscape benchmark suite that mimics the properties of the Inverse
Folding Problem (IFP) [6]. The IFP aims, given a protein sequence of N amino
acids, at finding other sequences that will result in the same 3D structure. The
corresponding optimisation problem is highly multi-modal and the genetic algo-
rithm proposed in this work addresses this aspect by adding a novel diversity
controlling mechanism. The preference-based approach employs a Weighted Sum
Model (WSM) in order to control the desired bias between fitness and diversity.
The resulting WSM score allows to iteratively determine and remove the indi-
vidual in the combined parent and offspring population, with the lowest overall
fitness contribution with respect to the defined preferences. The remainder of
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this article is organised as follows. First the current state-of-the-art is situated
in the related literature in Section 2, then a detailed description of the prob-
lem and of the biological background is introduced in Section 3. In Section 4
the contribution of this work in terms of achieving an adjustable level of fitness
and diversity as a Preference-Based Genetic Algorithm (PBGA) is presented.
Section 5 describes the experiments conducted and provides the analysis of the
results obtained for the NK benchmark suite. Finally the conclusion and per-
spectives are summarised in Section 6.

2 State-of-the-art

In meta-heuristics, the subject of exploration vs. exploitation characteristics has
been thoroughly studied. In this aim, a number of works have sought to main-
tain and control diversity in population-based meta-heuristics, e.g. crowding
methods by DeJong [2], fitness sharing by Goldberg and Richardson [3], cellular
algorithms by Alba and Dorronsoro [1], diversity preserving selection strategies
based on hamming distance Shimodaira [7] and on altruism by Laredo et al. [4].

Preference-based algorithms have been discussed in the literature [5, 8] and
refer to algorithms where the user preference is incorporated in the choice of
regions in the solution or objective space. Preference can be incorporated in a
number of ways, e.g., by modifying the fitness evaluation or selection schemes.
The Indicator Based Evolutionary Algorithm (IBEA) [9] is an example where
an indicator that characterises the population as a whole is used to guide the
algorithm by eliminating the least desired individuals of the parent and offspring
population union. The proposed PBGA in this paper uses the same principle
of iterative elimination, determining the overall most preferable subset directly
rather than achieving it as an indirect effect of designed mechanisms.

3 Bio-Inspired NK Landscape Benchmark Problem

In the NK benchmark problem as well as in the Inverse Folding Problem (IFP), a
single solution is represented as a sequence A = {aai} and consists of N residue
positions, where 1 ≤ i ≤ N and aai ∈ {1, ..., 20} corresponds to the set of 20
possible amino acids. The overall size and the number of local “hills and val-
leys” of the NK landscape model can be adjusted with two parameters, N and
K. This paper focuses on optimising two novel NK benchmark model instances1

proposed by Nielsen et al. [6]. These consist in the combination of two NK mod-
els, FA(x) and FB(x), by a simple multiplication with different K and different
neighbourhood definitions as defined in the Table 1.

1 The NK Landscape Protein IFP Benchmark Suite - http://nk-ifp-bench.gforge.
uni.lu/index.html
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Table 1: NK Landscape Protein IFP Benchmarks
Model Setting

NK-IFP-1 FA(x): a K = 4 semi-adjacent circular neighbourhood is designed as fol-
lows: {xi2, xi1, xi+1, xi+2}, omitting the central position xi.
FB(x): a K = 3 neighbourhood of uniform random distribution.

NK-IFP-2 FA(x): a K = 4 semi-adjacent circular neighbourhood as NK-IFP-1.
FB(x): a K = 5 neighbourhood of uniform random + 20 positions wide
triangular distribution.

4 A Novel Preference-Based Approach

The main idea of the preference-based approach is to use a Weighted Sum Model
(WSM) in order to constantly maintain a current population best fulfilling the
defined preferences. In an iterative manner, the weakest individuals from the
combination of parent and offspring populations are determined and removed
until the desired population size is achieved.

Algorithm 1 Preference-Based Genetic Algorithm

1: Initialise(P0)
2: t← 0
3: while t < tmax do
4: Qt ← makeNewOffspringPop(Pt)
5: Rt ← Pt + Qt

6: while |Rt| > |Pt| do
7: I ← getWeakestIndividual(Rt)
8: Rt ← Rt − I
9: end while

10: Pt ← Rt

11: t← t + 1
12: end while

The procedure getWeakestIndividual of determining the weakest individual in
Algorithm 1 is defined as follows:

1. Systematically remove one individual
2. Compute the weighted sum score according to Equation 1
3. Add the individual back to the population
4. Repeat from step 1. until all individuals have been tried once and the worst

individual can be determined.

The weighted sum score of a given population P is calculated as follows:

WSMscore(P ) = −Wfit · Ffit(P ) +Wdiv · Fdiv(P ) (1)
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Note the negation of Wfit in Equation 1 as we want to maximise diversity but
also minimise fitness at the same time.

The population fitness Ffit is computed by simply taking the average of the
fitness of all M individuals of the current population P :

Ffit(P ) =
1

M

M∑

i=1

F (x) (2)

An effective and simple measure of distance between two sequences is the Hamming-
distance. For two sequences A = {aai} and A′ = {aa′i} where 1 ≤ i ≤ N , the
normalised Hamming distance between them is defined as:

dHamm(A,A′) =
1

N

N∑

i=1

di where di =

{
0 if aai = aa′i
1 if otherwise

(3)

The population diversity Fdiv is computed by taking the average Hamming dis-
tance of each M individuals to the remaining M−1 individuals of the population
P :

Fdiv(P ) =
1

M · (M − 1)

M∑

i=1

M∑

j=1

dHamm(Ai, Aj), ∀i 6= j (4)

5 Experimental Results

To study the performance of the PBGA with respect to fitness and diversity con-
vergence, a number of experiments have been conducted to compare it against
different Genetic Algorithms, i.e., the generational (gGA), the synchronous cellu-
lar (scGA) and the steady-state (ssGA). The PBGA was tested with the following
six different weight ratio settings:

W(fit,div) = {(1.0, 0.0), (0.9, 0.1), (0.8, 0.2), (0.7, 0.3), (0.5, 0.5), (0.3, 0.7)}.

Table 2 summarises the settings and parameters used to conduct the experi-
ments.

Figure 1a illustrates the convergence of fitness for the best performing PBGA
setting in comparison with the gGA, scGA and the ssGA. The gGA performs
the worst and the PBGA with a weight setting of (0.9, 0.1) surpasses the ssGA
and achieves better final fitness results than all of the other GAs. Figure 1b
illustrates the diversity convergence for the same algorithms. It is noted that the
PBGA achieves a higher diversity than the scGA and ssGA while at the same
time having better fitness results. Similar graphs are obtained for the NK-IFP-2
model and are hence not shown here.

Table 3 summarises average fitness and diversity for all the algorithms tested
highlighting best and worst algorithm results in light and dark grey respectively.
With a weight setting of (0.9, 0.1) the PBGA achieves the best fitness for both
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Table 2: Experimental settings.
Setting Value

GAs gGA, scGA, ssGA and PBGA
Population size 100
Termination condition 30000 function evaluations
Number of independent runs 30
Selection Binary tournament (BT)
Neighbourhood C9 in scGA
Crossover operator SPX, pc = 0.9
Mutation operator Uniform, pm = 1

N

Elitism 2 individuals (for gGA)

benchmark models with -0.662 for the best value and -0.660 on average for
model 1 and with -0.632 for the best value and -0.631 on average for model
2. It is interesting to note that the PBGA with a weight setting of (0.5, 0.5)
achieves better results than the gGA in terms of fitness as well as diversity for
both models with -0.574 vs. -0.559 for the best fitness value and -0.511 vs. -0.456
on average for model 1 and with -0.550 vs. -0.545 for the best fitness value and
-0.485 vs. -0.429 on average for model 2.

In order to provide statistical confidence, the Wilcoxon test indicator was
applied with a 5% significance level. With a weight setting of (0.9, 0.1), the
PBGA clearly outperforms the gGA and the scGA with statistical confidence for
the average fitness with values -0.662 vs. -0.559 and -0.662 vs. -0.644 respectively
for model 1 and with values -0.632 vs. -0.545 and -0.632 vs. -0.621 respectively
for model 2, whereas in comparison with the ssGA the PBGA does not achieve as
quick good results as the ssGA, but surpasses the ssGA in the end and achieves
better average fitness values of -0.662 vs. -0.650 respectively for model 1 and with
values -0.632 vs. -0.628 respectively for model 2. However, as seen in Figure 1a for
model 1, the final slope is steeper than the ssGA, indicating better performance.
The steeper final slope can be explained by the constantly high diversity as seen
in Figure 1b for model 1, which allows for continued exploration while the other
GAs suffer from premature convergence.

Table 3: Final values in terms of fitness and diversity averaged over 30 indepen-
dent runs for the two NK benchmark models.

Model 1 Model 2
Fitness Diversity Fitness Diversity

Algorithm Best Average Best Average Best Average Best Average

PBGA1.0 0.0 -0.649 -0.648 ±0.37E−3 0.005 0.002 ±1.78E−3 -0.628 -0.628 ±0.27E−3 0.004 0.001 ±1.56E−3
PBGA0.9 0.1 -0.662 -0.660 ±1.07E−3 0.041 0.043 ±0.84E−3 -0.632 -0.631 ±0.76E−3 0.031 0.038 ±3.25E−3
PBGA0.8 0.2 -0.652 -0.627 ±12.3E−3 0.250 0.337 ±43.8E−3 -0.621 -0.594 ±13.4E−3 0.310 0.406 ±48.1E−3
PBGA0.7 0.3 -0.629 -0.582 ±23.3E−3 0.508 0.612 ±52.1E−3 -0.602 -0.557 ±22.5E−3 0.542 0.639 ±48.7E−3
PBGA0.5 0.5 -0.574 -0.511 ±31.4E−3 0.774 0.833 ±31.4E−3 -0.550 -0.485 ±32.3E−3 0.787 0.846 ±29.6E−3
PBGA0.3 0.7 -0.527 -0.458 ±34.5E−3 0.880 0.909 ±14.6E−3 -0.503 -0.440 ±31.7E−3 0.888 0.913 ±12.4E−3
gGA -0.559 -0.456 ±51.4E−3 0.145 0.227 ±40.9E−3 -0.545 -0.429 ±58.0E−3 0.138 0.221 ±41.1E−3
scGA -0.644 -0.641 ±1.54E−3 0.017 0.010 ±3.36E−3 -0.621 -0.619 ±1.20E−3 0.013 0.009 ±2.18E−3
ssGA -0.650 -0.645 ±0.18E−3 0.005 0.001 ±1.97E−3 -0.628 -0.628 ±0.14E−3 0.001 0.001 ±0.42E−3
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(a) Fitness convergence PBGA vs. GAs (b) Diversity convergence PBGA vs. GAs

Fig. 1: NK benchmark model NK-IFP-1 average fitness and diversity conver-
gence.

6 Conclusion

In this paper a novel Preference-Based Genetic Algorithm (PBGA) was pre-
sented in combination with a weighted sum model, which allows to shift focus
arbitrarily between diversity and fitness with a direct effect on the population
as a whole without relying on secondary effects from added mechanisms or op-
erators. The PBGA was evaluated on NK benchmark models and compared to
state-of-the-art GAs. Final results were found comparable or better than the
other GAs on average, while the diversity of found sequences remains higher at
the same time. The best results were achieved using a weight setting of (0.9,
0.1) where 0.9 represents 90% of fitness and 0.1 represents 10% of diversity. In
addition, the PBGA showed a better convergence, which promises even better
solutions, given an evaluation budget beyond the computational limitations set
in this work. Future work will focus on the development of a more advanced
preference evaluation model using Fuzzy logic while adding more preferences
such as crowding or elitism, and making the selection of preferences adaptive.
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Abstract. The existence of stable models for a normal residuated logic
program defined on [0, 1] and the uniqueness of these models in the par-
ticular case of the product t-norm, its residuated implication, and the
standard negation have been recently studied by Madrid and Ojeda-
Aciego [10]. In this paper, we introduce results which generalize the ex-
istence of stable models for normal residuated logic programs defined
on any convex compact set of an euclidean space. In addition, we show
which conditions are required in order to guarantee the uniqueness of a
stable model for a normal residuated logic program defined on C([0, 1]).

Key words: negation; normal residuated logic program; stable model.

1 Introduction

Searching for conditions guarantying the existence and uniqueness of fuzzy stable
models in normal residuated logic programming has received a strong attention
since the definition of this kind of programs [1].

However, the existence of stable models cannot be guaranteed for an arbi-
trary normal residuated logic program [2]. This is due to the fact that fuzzy
framework includes two different dimmensions: the syntactic structure of the
normal program (the syntaxis) and the choice of suitables connectives in the
underlying lattice, the semantics of the program.

As the connectives are fixed in classical logic programming, we can only
establish the syntactic conditions of the program. Nevertheless, we can choose
many operators to use them as connectives in normal residuated logic programs,
and this implies that semantics plays a crucial role in this framework.

Until now, only a few sufficient conditions have been found to ensure the
existence of fuzzy stable models in some approaches. In [3], it has been proven
that every normal logic program has stable models in the 3-valued Kleene logic.
Furthermore, by [4–8], we know that every normal residuated logic program has
stable models if the underlying residuated lattice has an appropriate bilattice
structure [9]. Recently, it has been shown in [10] conditions to ensure the exis-
tence and unicity of stable models for a normal residuated logic program defined
on [0, 1].
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In this paper, we will generalize the result of existence of stable models for
programs defined on any convex compact set of an euclidean space. Moreover, we
will introduce the conditions which guarantee the uniqueness of stable models
for normal residuated logic programs defined on C([0, 1]).

2 Preliminaries

In this section, we will recall the main definitions and results which will be used
in the paper. Firstly, we introduce the definition of residuated lattice.

Definition 1. A residuated lattice is a tuple (L,≤, ∗,←) such that:

(1) (L,≤) is a complete bounded lattice with > and ⊥ the greatest and the least
elements, respectively;

(2) (←, ∗) is an adjoint pair in (L,≤), that is, the equivalence:

z ≤ (x← y) if and only if y ∗ z ≤ x

holds, for all x, y, z ∈ L.
(3) (L, ∗,>) is a commutative monoid.

Note that, the adjoint pair is uniquely determined by the chosen operator ∗.
Specifically, fixed a left-continuous operator ∗, its adjoint implication is defined
as follows:

x← y = sup{z ∈ L : y ∗ z ≤ x}
Now, we will consider a residuated lattice enriched with a negation operator.

A negation operator is any decreasing mapping n : L → L satisfying n(⊥) = >
and n(>) = ⊥. The negation will model the notion of default negation.

Definition 2. Given a residuated lattice with negation (L,≤, ∗,←,¬), a normal
residuated logic program P is a finite set of weighted rules of the form:

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional symbols such that
pi 6= pj, for all i, j ∈ {1, . . . , n}.

As usual, we denote the rules as 〈p← B;ϑ〉, where p is the head of the rule, B
its body and ϑ its weight. A fact is a rule where no propositional symbols appear
in the body.

The set of propositional symbols appearing in P is denoted by ΠP.

Definition 3. A fuzzy L-interpretation is a mapping I : ΠP → L which assigns
a truth value to every propositional symbol appearing in P . We say that:

(1) I satisfies a rule 〈p← B;ϑ〉 if and only if ϑ ≤ I(p← B).
(2) I is a model of P if it satisfies all rules in P.

151



The set of all L-interpretations will be denoted as IU, where U is the resid-
uated algebra in which the lattice is defined. An ordering relation v can be
defined in IU as follows: Given I and J two L-interpretations, I v J if and only
if I(p) ≤ J(p), for all p ∈ ΠP.

Given a finite normal residuated logic program P defined on L, the set of
L-interpretations with the new ordering relation verifies some properties of the
underlying lattice. Specifically, it inherits the properties of the cartesian product
of several copies of the lattice. Indeed, each L-interpretation can be seen as an
element of Ln, where n is the cardinal of ΠP.

Theorem 1. If 〈L,≤〉 is a complete lattice, then 〈IU,v〉 is a complete lattice.

2.1 Immediate consequence operator and stable models

A generalization of the immediate consequence operator for normal residuated
logic programs is given in the next definition.

Definition 4. Let P be a normal residuated logic program. The immediate con-
sequence operator is the mapping TP : IU → IU defined as

TP(I)(p) = sup{I(B) ∗ ϑ : 〈p← B;ϑ〉 ∈ P}

where p ∈ ΠP.

If P is a positive program (without any negation), then TP is a monotonic
operator and we can characterize the models of the residuated program by the
post-fix points of TP.

Proposition 1. Let P be a positive residuated logic program. Then M is a model
of P if and only if TP(M) ≤M .

Knaster-Tarski’s fix point theorem ensures that the operator TP has a least
fix point. In addition, by the proposition above, this least fix point is actually
the least model of P. This fact leads us to define the least model semantics in
positive residuated logic programs.

The main difference with respect to the case of normal residuated logic pro-
grams is that TP is not necessarily monotonic. Therefore, we cannot guarantee
the existence of the least model and we need another notion to define the seman-
tics for a normal residuated logic program. A new mathematical object which
generalizes the least model semantics to normal residuated logic programs is re-
quired. This object is the stable model of a program, which was defined in [11].

Let P be a normal residuated logic program and I a fuzzy L-interpretation.
First of all, we will build a positive residuated program PI by substituting each
rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ¬pn; ϑ〉

152



by the rule

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Observe that, we can apply to PI the known results to positive residuated
program.

Definition 5. The program PI is called the reduct of P with respect to the
interpretation I.

Thanks to the notion of reduct we can define a stable model of a program.

Definition 6. Let P be a normal residuated logic program and let I be a fuzzy
L-interpretation. I is said to be a stable model of P if and only if I is a minimal
model of PI .

An important feature of stable models, which is also verified in our frame-
work, is that a stable model is always a minimal fix point of TP.

Proposition 2. Any stable model of P is a minimal fix point of TP.

It is worth noting that the counterpart of Proposition 2 is not satisfied, in
general, because the TP operator is not necessarily monotonic.

3 On the existence and unicity of stable models

Our goal is to extend the obtained results by Madrid and Ojeda-Aciego about
the existence and the unicity of stable models for normal residuated logic pro-
grams [10]. With this purpose, we need to consider an extension of Brouwer’s fix
point theorem.

Theorem 2. Let X an euclidean space and let K be a a convex compact set not
empty. Every continuous mapping f :K → K has a fix point.

Note that, the set of all L-interpretations of a normal residuated logic pro-
gram defined on a lattice with convex (compact, respectively) support is a convex
(compact, respectively) set. This fact leads us to present the following result.

Proposition 3. Let P be a normal residuated logic program defined on a lattice
(K,≤, ∗,←,¬) where K is a convex (compact, respectively) set in an euclidean
space X. Then the set of L-interpretations of P is a convex (compact, respec-
tively) set in the set if mappings defined on X.

Applying Theorem 2 to the operator R defined by R(I) = TPI
, we obtain

that TPI
have a fix point. As PI is a positive residuated logic program, we obtain

that this fix point is actually the minimal model of PI and then it is a stable
model of P.

The continuity of the connectives ∗ and ¬ plays a key role in order to apply
the Theorem 2 to the operator R.
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Theorem 3. Let (K,≤, ∗,←,¬) be a residuated lattice where K is a convex
compact non-empty set in an euclidean space. If ∗ and ¬ are continuous oper-
ators, then every finite normal program P defined on this lattice has at least a
stable model.

Finally, we present a result which ensure the uniqueness of the stable models
for a normal program defined with the product adjoint pair and the standard
negation on the set of subintervals of [0, 1], that is, C([0, 1]). This fact is inter-
esting because not only one truth value can be assigned to each propositional
symbol in P, but we can assign a minimal truth value and a maximal truth value
for the propositional symbol.

Theorem 4. Let P be a normal residuated logic program defined on C([0, 1]),
and let us write for each propositional symbol p in P, ϑp = max{ϑj : 〈p ←
β ;ϑj〉 ∈ P}. Then, if for every rule 〈p← q1 ∗ · · · ∗ qh ∗¬qh+1 ∗ · · · ∗ ¬qk ;ϑ〉 ∈ P,
the inequality below holds

(
h∑

j=1

ϑq1 · . . . · ϑqj−1
· ϑqj+1

· . . . · ϑqh · ϑ
)

+ (k − h)(ϑq1 · . . . · ϑqh · ϑ) < (1, 1)

then there exists only one stable model of P.

4 Conclusions

We have shown results which guarantee the existence of stable models for normal
programs defined on a convex compact set, and which guarantee the uniqueness
of stable models for normal programs defined on C([0, 1]).
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Abstract. Multiple sequence alignment (MSA) is a problem from the
bioinformatics domain consisting in finding the best possible alignment
for a set of three or more sequences. Different scores have been proposed
to assess the quality of MSA solutions, so the problem can be formu-
lated as a multi-objective optimization problem. In this paper we carry
out a performance study involving five multi-objective metaheuristics
which are representative of the state-of-the-art. The results when solv-
ing a number of instance problems reveals that the classical NSGA-II
and SPEA2 algorithms can outperform more modern techniques.

Keywords: Multiple sequence alignment, multi-objective optimization,
metaheuristics, performance comparison

1 Introduction

The alignment of multiple DNA, RNA and protein sequences (MSA) is a common
task in Bioinformatics [1]. The aim of MSA is comparing different sequences in
order to extract their shared information and their significant differences. The
alignment of pair of sequences can be achieved by using dynamic programming
techniques, but these strategies cannot be applied when dealing with three or
more sequences because the search space grows exponentially with the number
of sequences and it is also dependent on the sequence lengths. These reasons
have lead to the use metaheuristics to deal with MSA problems [2].

An additional issue in MSA is that there exist different methods to measure
the accuracy on an alignment, so the problem can be formulated as a multi-
objective optimization problem [3][4]. The motivation of our work is that these
studies rely on the use of the NSGA-II algorithm [5], so we are interested in
determining whether other algorithms could be more adequate for solving MSA
problems. In this paper, we elaborate our first approximation to this issue. Our
main contribution is the comparison of a number of multi-objective metaheuris-
tics: NSGA-II, SPEA2 [6], AbYSS [7], MOCell [8], and SMS-EMOA [9]. All these
algorithms but NSGA-II are applied the first time to MSA to the best of our
knowledge.
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The rest of the paper is organized as follows. Section 2 includes a review of
related work. The problem is described in Section 3. The experimentation details
and an analysis of the obtained results are presented in Sections 4 and 5. Finally,
the conclusions and lines of future work are commented in Section 6.

2 Related Work

In this section we briefly review some multi-objective approaches published in
the literature to solve the MSA problem using multi-objective optimization tech-
niques.

Ortuño et al. implemented a NSGA-II based multi-objective evolutionary
algorithm to align multiple sequences and applied it to optimizing three objec-
tives: STRIKE score, non-gaps percentage and totally conserved columns [3].
Soto and Becerra proposed a multi-objective evolutionary algorithm, also in-
spired in NSGA-II, to optimize pre-aligned sequences in [10]. They used two
objectives functions to compare the quality of the MSA: the entropy and the
MetAl metrics. A multi-objective genetic algorithm based in NSGA-II (MSAG-
MOGA) is described in [4], where three objectives are considered: similarity,
affine gap penalty and support.

The first two works take the approach of pre-computing alignments with
existing tools (Muscle, ClustalW, Mafft, T-Coffee, etc.), in such a way that the
initial populations contain aligned solutions. We use also this idea in this work.

It is worth nothing that these three papers consider different objectives, so
there is no a consensus about how assess the quality of the alignments. This
makes also makes difficult to compare new proposals against them.

3 Problem Description

Given a finite alphabet Σ and a set S = (s1, s2, ..., sn) of n sequences of varying
length, an alignment is a matrix where all the symbols of the sequences appear
in the same order and a special symbol or gap (typically represented with the
character ‘-’) can be inserted potentially at any position in such a way that all
the sequences have the same length.

An example of alignment is shown below, representing four sequences with
two aligned columns (marked with an asterisk).

APPSVFAEVPQ-AQPV
AKRS-V-E-PFR-IKM
-LISKRA-YP--I---
-SASTIGVEPC-RA-P

* *

The MSA problem consists then in inserting gaps in the proper places in order
to maximize some scores. For example, in [3] two of the considered objectives are
to maximize the non-gaps percentage and the percentage of completely aligned
columns. These are very intuitive goals, but they are not fully contradictory from
a multi-objective point of view: if after manipulating the sequences a column is
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full of gaps then it can be removed, thus improving the number of non-gaps, but
this does not implies a worsening in the percentage of aligned columns.

In this work we have select two objectives: the aforementioned percentage of
aligned columns and the sum of pairs (SOP), which is computed by adding all
the scores of the pairwise comparisons between each symbol in each column of
the alignment. A scoring matrix is need to calculate the SOP; we have used the
PAM250 matrix (with a gap penalty of -8).

4 Experimentation

In this section, we briefly describe the algorithms we have selected, the chosen
benchmark, and experimentation methodology.

Our study includes five multi-objective metaheuristics. NSGA-II [5] and
SPEA2 [6] are classical evolutionary algorithms which have been widely used
since they were proposed. SMS-EMOA [9] and MOCell [8] are also evolutionary
algorithms and they are representative of indicator-based and cellular techniques,
respectively. The last method is AbYSS [7], a scatter search algorithm. All the
metaheuristics have been implemented in the jMetal framework [11].

We have considered a set of parameter settings that have been adopted in
other studies. This way, all the algorithms runs until 25000 function evaluations
have computed, the population sizes have a size of 100 in the evolutionary al-
gorithms (20 in AbYSS), and MOCell and AbYSS has an archive size of 100.
All the metaheuristics include the same genetic operators: single-point crossover
(applied with a probability of 1.0) and a multiple mutation operator which ran-
domly selects one out of three mutations: one gap insertion (a gap is randomly
inserted), one gap shifting (a random gap is selected and it is shifted with the
symbol on the right or on the left), and gaps merging (a number of gaps are
joined to appear consecutively in the sequence). This multiple mutation opera-
tor is applied with a probability of 1.0/L, where L is the number of sequences.
The encoding used to represent the sequences consists of lists of characters.

As commented before, each problem has been previously aligned with a num-
ber of tools, namely Clustal Omega, T-Coffee, Mafft, and Muscle. The obtained
alignments are included in the initial population of all the algorithms, and they
are also used to create new solutions. The process consists on choosing an align-
ment and inserting a number of gaps (from 1 to 5) at random positions.

We have chosen five problems from the BAliBASE 3.0 library [12]. Concretely,
we have taken five instances of the RV11 reference set, which are referred as to
BB11001 to BB11005. They range from 4 to 14 sequences.

The experimentation methodology is described next. 20 independent runs
have been carried of out of each combination algorithm-problem, and the Hy-
pervolume quality indicator [13] has been computed to all the yielded Pareto
front approximations. We report the obtained median and interquartile range
(IQR) values. To check the significance of the differences between the algorithms
we have applied the unpaired Wilcoxon rank-sum test with a confidence level
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Table 1. Hypervolume quality indicator values. Median and IQR

NSGAII SPEA2 ABYSS SMS-EMOA MOCell
BB11001 0.00e + 000.0e+00 0.00e + 001.5e−01 1.46e− 035.7e−02 0.00e + 000.0e+00 0.00e + 000.0e+00

BB11002 4.04e− 012.4e−01 4.97e− 011.2e−01 1.46e− 011.2e−01 4.99e− 011.2e−01 1.66e− 012.5e−02

BB11003 2.28e− 011.6e−01 2.63e− 012.2e−01 0.00e + 000.0e+00 1.91e− 011.4e−01 0.00e + 000.0e+00

BB11004 2.93e− 011.8e−01 2.80e− 019.3e−02 0.00e + 000.0e+00 2.03e− 011.5e−01 4.83e− 027.0e−02

BB11005 4.44e− 011.3e−02 4.08e− 011.5e−02 0.00e + 000.0e+00 4.07e− 012.5e−02 3.90e− 013.5e−02

Table 2. Results of the Wilcoxon rank-sum test. Each symbol in the cells represents
the five considered ploblems. The N symbol indicates that the algorithm in the row is
significantly better than the algorithm in the column, a O means the opposite, and a
‘-’ states that the differences are non-significant.

SPEA2 ABYSS SMSEMOA MOCell
NSGAII – – – – N O N N N N – – – – N – N N N N
SPEA2 – N N N N – – – – – N N N N N
ABYSS – O O O O N – – O O
SMSEMOA N N N N N

of 95% (i.e., significance level of 5% or p-value under 0.05), meaning that the
differences are unlikely to have occurred by chance with a probability of 95%.

As the true Pareto fronts of the solved problems are unknown, we have built
a reference front for each problem by joining all the fronts obtained by all the
algorithms in all the independent runs and deleting the dominated solutions.

5 Results

The obtained results are included in Table 1, where the cells with dark and light
gray background colors indicate respectively the best and second best values. We
can observe than some cells contain a value of 0; this means that the obtained
fronts are beyond the limits of the reference Pareto front, so the Hypervolume
is not computed in those situations.

The values included in the table reveals that NSGA-II and SPEA2 have the
best overall performance, outperforming the other algorithms. Both NSGA-II
and SPEA2 are generational evolutionary algorithms, while SMS-EMOA and
MOCell follow a steady-state scheme, so a first conclusion could be that the
generational selection scheme can have a positive influence in searching for opti-
mal alignments. However, the results of the Wilcoxon rank-sum test (see Table 2)
show that most of the differences in the pairwise comparison between NSGA-II,
SPEA2, and SMS-EMOA are not significant.

To illustrate the Pareto front approximations that are found by the compared
algorithms (we have excluded MOCell), we include in Figure 1 the fronts having
the best Hypervolume value for problems BB11001 and BB11004.

6 Conclusions and Future Work

We have presented a study of solving MSA problems with a number of multi-
objective metaheuristics. Our main motivation has been that multi-objective
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Fig. 1. Pareto front approximations having the best Hypervolume obtained by NSGA-
II, SPEA2, SMS-EMOA, and AbYSS for problems BB11001 and BB11004.
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optimization approaches for MSA are scarce in the literature, and practically all
of them relies on the use of NSGA-II. So, we have selected five multi-objective
metaheuristics and we have compared them again a benchmark of five problems.

The conclusion is that, according the parameter settings we have used and
the chosen benchmark, the classic NSGA-II and SPEA2 algorithms outperform
more recent proposals according to the Hypervolume quality indicator.

Our work is a first step in the open issue of MSA with multi-objective meta-
heuristics. First, we have used standard settings established in other studies
(mainly on continuous optimization), so a parameter sensitivity study is needed
to find more effective algorithm configurations to deal with MSA. Second, the
benchmark must be augmented in a significant way to draw firmer conclusions.
Finally, an analysis of the objectives to optimize must be carried out to decide
which scores are really important; if more than four or five would be of interest,
the MSA would become a many-objective problem, so a new set of metaheuristics
should be needed.
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Abstract. In this paper the location of the subduction zone between
the African and Eurasian plates is studied. A method of classification of
functional data is employed in order to determine the limits of this zone.
The used data are provided by the RAP network and the method of clas-
sification is based on two new similarity measures defined in this work.
Furthermore, in order to determine the optimal number of groups in
each classification, Silhouette coefficient is employed. Finally, the results
obtained are compared to the opinion’s experts.

Keywords: FDA, classification, Lipschitz semi-distance, Silhouette co-
efficient

1 Introduction

The southern part of the Iberian peninsula is over a subduction zone that arise
from the convergence of the Euroasian plate and African plate. The limits of
this subduction zone are not well determined. In Figure 1 we can see different
versions about the location of this zone. In this work we study the problem of
location of this zone by using a method of classification.

This region is characterized by a complex seismotectonic pattern and moder-
ate seismic activity associated with the convergence between Africa and Eurasia.

The Andalusian Positioning Network (RAP) is a permanent station network
which cover Andalusian area. The stations make a geodetic frame to surveying
and cartographic applications.

The seismic movements can be considered as external impulses that generate
a displacement in the stations of RAP network. This displacement depends on
the situation over the plates. Hence, when we classify the stations, it is important
to use a measure that perceive the displacement of the coordinates.

The data employed in this work give the displacement of north and east
coordinates between 2011 and 2013. In this paper, these data are considered as
functional data.
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2 Clasification of RAP network based on FDA

Fig. 1. The limits beetween the Eurasian and the African plate.

Fig. 2. Subduction zone.

2 FDA

Functional data analysis (FDA) extends the classical multivariate methods when
data are functions or curves. According to [1], a functional random variable X
is a random variable with values in an infinite dimensional space.

The main source of difficulty when dealing with functional data consists in
the fact that the observations are supposed to belong to an infinite dimensional
space, whereas in practice one only has sampled curves observed into a finite set
of time-points. Indeed, it is usual that we only have discrete observations Xij of
each sample path Xi(t) at a finite set of knots.

Because of this, the first step in FDA is often the reconstruction of the
functional form of data from discrete observations. The most common solution
to this problem is to consider that sample paths belong to a finite dimensional
space spanned by some basis of functions ([2]).

An important choice to do when working with functional data is the basis of
functions considered.

A basis in FDA is a set of independient functions such that any function can
be approximated as a linear combination (of a sufficiently large number) of these
functions. Hence, by using a basis, it is possible to aproximate the functional data
(of infinite dimension) in a subspace of finite dimension.

The choice of a basis is essential and it must be made by considering how the
studied functions are. That is, Fourier basis are used with periodic functions,
B-splines basis, for smooth functions and Wavelets basis, for curves that are
characterized by numerous local features like peaks or piecewise constants.
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Clasification of RAP network based on FDA 3

3 Similarity measures

Given two functions f and g in L2(τ), where τ = [T1, T2] ⊂ R, the usual distance
between these functions is given by:

dL2(f, g) = ||f − g||L2 =

√
(

∫ T2

T1

(f(t)− g(t))2dt)

But this measure seems not to represent the intuitive idea of similitude be-
tween curves.

It seems straightforward to see that two parallel curves given by f(t) = t and
g(t) = t + c represent two individuals with the same behaviour. Therefore, the
distance between f and g should be 0. However, by using the previous distance,

dL2(f, g) = ||f − g||L2 =
√
|T2 − T1| ∗ c2 =

= c ∗
√

(T2 − T1) 6= 0

In order to avoid this problem, it is possible to use this distance but with
the derivatives of the functions. However, in this case, the similitude between
curves is not well measured. For this reason, it is necessary to introduced another
measure when functional data are employed.

3.1 Lipschitz semi-distance

If we have a function defined between two euclidean spaces (X, dx) and (Y, dy),
Lipschitz measure is defined in [3] as:

Lip(f) = max{ ||f(x)− f(y)||
||x− y|| : x, y ∈ X}

Based on this measure Lipschitz norm of a function f is defined as follows:

||f ||Lip = Lip(f)

Finally, Lipschitz semi-distance is defined as the semi-distance induced by
this norm, i.e.,

dL(f, g) = ||f − g||Lip = sup{ ||(f − g)(x)− (f − g)(y))||
||x− y|| : x, y ∈ X}
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4 Clasification of RAP network based on FDA

3.2 Measure based on inducement

Now, we define a similarity measure based in the previously defined Lipschitz
semi-distance. In Lipschitz semi-distance, the similarity between curves is given
by the maximum in the difference of increasings. In this case, we consider all the
relative maximums in the difference of increasings.

Hence, given two functions f , g : τ → R, the measure based on inducement
is defined as follows:

dest(f, g) =
m∑

i=1

{|h′(xi)|, xi ∈ τ}

where h = f − g and x1, x2, . . . , xm are the relative maximums of |h′| in τ .

4 Silhouette coefficient

Silhouette coefficient was proposed by Rousseeuw in 1987 ([4]) in order to provide
an evaluation of clustering validity and to select the appropiate number of cluster
after a partitioning technique.

Let us first take any object i which is assigned to the cluster A and we
compute

a(i) =average dissimilarity of i to all other objects of A.

a(i) =
1

nA

nA∑

r=1

d(i, ar), ar ∈ A (1)

Let us now consider any cluster C which is different from A, and compute

d(i, C) =average dissimilarity of i to all objects of C.

d(i, C) =
1

nC

nC∑

r=1

d(i, cr), cr ∈ C (2)

After computing d(i, C) for all clusters C 6= A, we select the smallest of those
numbers and denote it by b(i) = minC 6=Ad(i, C)

Now we take the Silhouette coefficient at i as

s(i) =
b(i)− a(i)

max{a(i), b(i)} (3)

And finally Rousseeuw define the Silhouette coefficient of the partitioning as

s =
1

n

n∑

i=1

s(i) (4)

where n is the number of objects in the set.
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Clasification of RAP network based on FDA 5

5 Implementation and results

The data used in this study are the displacement in the north and east coordi-
nates in the GPS stations between the years 2011 and 2013. These data have
been modified in two phases: first, we complete the series by using a Kalman
filter and, second, we eliminate the values that, according to the experts, are
considered as outliers. These modified data have been fitted to Fourier basis.

After this process, we apply a hierarchical grouping procedure to the func-
tional data. By considering the opinion of the experts, the displacements in the
plane North-East have been used instead of considering separately the measure
of both coordinates. The optimal number of groups has been fixed by considering
Silhouette coefficient introduced in this work.

Now, we apply this procedure with Lipschitz semi-distance, with the similar-
ity measure based on inducement, and the distance L2 over the derivatives.

From this study, we obtain that, with Lispchitz semi-distance, the best clas-
sification is obtained, according Silhouette coefficient, for three groups. In this
case, we see that a group is only consisting of Melilla (see Figure 4).

In the case where the similarity measure based on inducements is used, the
best classification is obtained for two groups (see Figure 3).

Finally, when the usual distance over the derivatives is employed, according
to Silhoutte cofficient, the best classification is also obtained for three groups.
Therefore, this classification coincides with the classification obtained for Lips-
chitz semi-distance.

Fig. 3. Classification with dest.
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6 Clasification of RAP network based on FDA

Fig. 4. Classification with dL.

6 Conclusion

In this work we have studied the location of the subduction zone between the
African and Eurasian plates. By using the data of RAP network, we have clas-
sified the stations in order to determine the limits of this zone.

In this classification, we have used functional data and for this type of data,
we have introduced two new similarity measures. After the process of hierarchical
grouping, we conclude that the best classification is the one obtained with the
similarity measure based on inducements where two groups are distinguished.

According to the location of the subduction zone estimated by the experts,
both groups are placed in both sides of this location and, thus, the obtained
results are coherent.
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1 Introduction

In this paper we consider the semilinear damped beam equation:

∆ ≡ utt + ut + uxxxx − αuxx = (F (ux))x, (1)

where t > 0, x ∈ R, u = u(x, t) : (0, T ) × R → R is an unknown function, F
is an nonlinear arbitrary function, differentiable, that depends of ux, and α a
positive constant. The equation depends on space, x, and time, t, u = u(x, t)
is the deflection of the roadbed and the nonlinear function F models the force
beam support.

Equation (1) can be written as a system of differential equations by using a
new auxiliary variable v:

v = ux, utt + ut + vxxx − α vx = f(v) vx, (2)

where f(v) = F ′(v).
In the past decade the theory of group of transformations has been used

to arrive to new solutions of partial differential equations (PDEs). We use the
classical method for finding symmetry reductions of PDEs, also called Lie group
method of infinitesimal transformations, in short when PDEs or ordinary differ-
ential equations (ODEs) are invariant under a Lie group of transformations, a
reduction transformation exists. In order to obtain all the solutions which are
inequivalent with respect to the group it is sufficient to derive the solutions from
the optimal system of subalgebras.

Conservation laws appear in many of physical, chemical and mechanical pro-
cesses, such laws enable us solve problems in which certain physical properties
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do not change in the course of time within an isolated physical system. The
importance of conservation laws also embraces mathematics, for instance, the
integrability of a PDE is strongly related with the existence of conservation
laws. Furthermore, they can be used to obtain exact solutions of a PDE.

In this paper, we study the classical Lie symmetries of system (2) and we
reduce it to systems of ODEs ([15],[1],[6],[7]). The structure is the following:
First we find the point transformation group which leaves the system invariant.
Next, from the optimal system of subalgebras we find the similarity variables
and similarity solutions that reduce the equations to ODEs. In Section 4 we
derive by using the multipliers method some nontrivial conservation laws.

2 Symmetry Reductions

Broadly speaking, to apply the classical method for finding symmetry reductions
we seek fields of the form

v = p(x, t, u, v)
∂

∂x
+ q(x, t, u, v)

∂

∂t
+ r(x, t, u, v)

∂

∂u
+ s(x, t, u, v)

∂

∂v
(3)

that leave the set of solutions of the system (2) invariant.
According to the Invariance Criterion ([15]) we obtain a relationship between the
extended variables (u,v,ux,ut,vx,...,uxxxx). Taking into account that these vari-
ables are essentially independent, the coefficients in the equation must be equal
to zero. This leads us to a system of differential equations in the infinitesimals
p,q,r and s so called determining equations.

Symmetries of the system (2)

For system (2) we have that from the determining equations, we only find, finite
dimensional algebras.
We obtain the following generators when F (u) is a nonlinear function:

w1 =
∂

∂x
, w2 =

∂

∂t
, w3 =

∂

∂u
, w4 = e−t

∂

∂u
.

The optimal system is

{λw1 + µw2, λw1 + w2 + µw3, λw1 + w2 + µw4, λ, µ ∈ R}.

1. For λw1 + µw2, the symmetry transformation is given by

z = µx− λt,
u(x, t) = h(z)
v(x, t) = g(z).

(4)

Substituting (4) into equation (1) we obtain the ODE

µ4 d
4h

dz4
+

(
λ2 − αµ2 − F ′

(
d h

dz

))
d2h

dz2
− λ dh

dz
= 0. (5)

2169



2. For λw1 + w2 + µw3, the symmetry transformation given by

z = x− λt,
u(x, t) = µt+ h(z)
v(x, t) = g(z).

(6)

leads to the ODE

d4h

dz4
+

(
λ2 − α− F ′

(
d h

dz

))
d2h

dz2
− λ dh

dz
+ µ = 0. (7)

3. For λw1 + w2 + µw4, the symmetry transformation given by

z = x− λt,
u(x, t) = h(z)− µe−t
v(x, t) = g(z).

(8)

leads to the ODE

d4h

dz4
+

(
λ2 − α− F ′

(
d h

dz

))
d2h

dz2
− λ dh

dz
= 0. (9)

3 Solutions

Some exact solutions can be obtained from equation (5) when µ = 1: as the
derivative of trigonometric, hyperbolic and exponential functions can be ex-
pressed in terms of themselves, we can choose F as an algebraic function.

For example h(z) = tanh(z) is solutions of (9) for

F (h) =
1

2
(λ+ 2) log h− h

(
4α− 4λ2

)
+ 6h2

4
+ C.

So, in this case we obtain the solution of (1), u(x, t) = tanh(x− λ t)
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u

Fig. 1. Solutions u = tanh(x− 2 t)
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If we take h(z) = sech2(z) is solutions of (5) when µ = 1 and for

F ′(h) = 1−
√

1− h
√
h+ 1

(
12h2 − 2

)

3h2 − 2

So, in this case we obtain the solution of (1), u(x, t) = sech2(x− λ t)

-4

-2

0

2

4

x

0.0

0.5

1.0

1.5

2.0

t

0.0

0.5

1.0

u

Fig. 2. Solutions u = sech2(x− 2 t)

Some of these solutions are soliton or kink solutions.

4 Multipliers method

Given a PDE a conservation law is a relation of the form

Dt(Φ
t) +Dx(Φx) = 0 (10)

where Φ = (Φt, Φx) represents the conserved density and flux, respectively, and
Dx, Dt denote the total derivative operators with respect to x and t respectively.

In [5] Anco and Bluman gave a general treatment of a direct conservation
law method for partial differential equations expressed in a standard Cauchy-
Kovaleskaya form in particular for evolution equations

ut = G(x, u, ux, uxx, . . . , unx).

The nontrivial conservation laws are characterized by a multiplier λ with no
dependence on ut satisfying

Ê[u] (Λut − ΛG(x, u, ux, uxx, . . . , unx)) = 0.

Here

Ê[u] :=
∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

x

∂

∂uxx
+ . . . .
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The conserved current must satisfy

Λ = Ê[u]Φt

and the flux Φx is given by [11]

Φx = −D−1x (ΛG)− ∂Φt

∂ux
G+GDx

(
∂Φt

∂uxx

)
+ . . . .

For equation (1) we get the following multipliers.

1, ex, exux

Each multiplier determines a corresponding conserved density and flux:

Λ = 1,
φt = ut + u,
φx = uxxx − αux − F (ux)

Λ = ex,
φt = ex(ut + u),
φx = ex(uxxx − αux − F (ux))−

∫
ex(uxxx − αux − F (ux))dx

Λ = exux,
φt = exutux,

φx =
∫
−exux

(
a+ d

dux
f (ux)

)
dux + 1/2

(
2uxuxxx − uxx2 − ut2

)
ex.

5 Conclusions

We have applied the Lie classical method to semilinear damped beam equation.
Using the characteristic equation, the similarity variables are found. Then, the
reduced form of the original nonlinear partial differential equation is obtained
as a nonlinear ordinary differential equation. In order to obtain exact solutions
we apply a direct method. By this method we have derived some travelling wave
solutions. By the multipliers method we have obtained nontrivial conservation
laws via integral formulae.
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Abstract. Web services have nowadays great impact on society due to
numerous internet transactions existing. WS-BPEL is a Bussiness Pro-
cess Enterprise Language that allows implement compositions as web
services. This type of software requires to be tested to avoid errors and
fatal consequences. In a previous work, the authors proposed to apply
the Metamorphic Testing technique to WS-BPEL compositions through
a particular architecture. That approach has some steps as the identifi-
cation and implementation of properties to be used. This paper focuses
on the composition analysis for obtaining information to automate that
step.

Keywords: Metamorphic Testing, WS-BPEL, oracle, Metamorphic Re-
lations, follow-up test cases

1 Introduction

Web Services Business Process language, WS-BPEL 2.0 [9] was standardized at
the request of some TIC companies (HP, IBM, Oracle, Microsoft, etc.). This
language allows us to develop a new Web Service (WS) designing more complex
business processes from pre-existing WS, and there is a widely support software
for them. However its development has not gone along with improvements on
testing techniques to this type of software [1]. A deficient testing in a system
could cause errors with negative consequences both economical and also human.
Consequently, good testing methods to test correctness of compositions are re-
quired. Progresses in this sense are described in [10].
Metamorphic Testing (MT) [5] is a software testing technique using metamorphic
relations (MRs). MRs are existing or expected relations defined on a set of inputs
and their corresponding outputs for multiple executions of a function under test.
The underlying concept is simple and its automation is not difficult. In fact, it has
proved successful in testing and improving the quality of traditional imperative
programs [14].
Regarding the cost effectiveness of MT, Zhang [13] conducted an experiment
where the fault detection capabilities and time cost of MT were compared to the
standard assertion checking method. Results showed that MT has the potential
to detect more faults than the assertion checking method.
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2 C. Castro-Cabrera et al.

This paper discusses how to use MT to test WS compositions in WS-BPEL.
Although MT has not been previously applied to this area, promising results have
been obtained in a number of different applications. A component diagram for a
testing framework implementing this approach is included as well as alternatives
to automate the analysis step for the MR identification and implementation.

The structure of the rest of the paper is as follows: An introduction about meta-
morphic testing and WS-BPEL language are respectively shown in Section 2
and Section 3. Section 4 includes the particular architecture. Section 5 describes
different alternatives for the analysis step and, finally, Section 6 presents the
conclusions and future work.

2 Metamorphic testing

There are properties associated to some functions or applications, such that,
if the inputs are changing (i.e.increase or decrease in a quantity), it should be
possible calculate the new output through the output generated from the orig-
inal input, without need to run the program. Therefore, if the new input is
executed by the program, the output must be the same that had been calcu-
lated previously. The operations to apply to the inputs constitute properties,
which relate the initial tests cases with the follow-up tests cases, they are called
Metamorphic Relations (MR). MT is based on this notion and easily carried
out in practice. The original test cases and their corresponding follow-up test
cases are constructed based on these MRs. Both of them are executed using the
program under test, to verify it. If any test case does not satisfy a MR, an error
is detected.

For instance, given a program implementing the arithmetic mean of a set of
numbers, permuting the order of the elements should not affect to the mean
calculation; If other operations are applied such as, multiplying or increasing
each value by a number, the resulting mean (follow-up test case output) should
be easily predicted, multiplying or increasing (respectively) the original mean
by that number. If the different outputs for their corresponding inputs are not
as expected, then there must be a error in the implementation. Other example,
based on lists of numbers it is showed in figure 1. The program f plays the role
of the reverse order function and t, multiply by 3, the MR:

(3,2) (2,3)

(6,9)(9,6) rev-order

rev-order

*3*3

L1 L2

  L2'

f

tt

L1'
f

Fig. 1. Metamorphic Relation Example
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Automatic Detection of MRs: A Challenge for WS-BPEL 3

3 WS-BPEL Composition Language

WS-BPEL is a programming language based on XML that is used to gener-
ate business processes from services defined previously. The resulting business
process can be then reused as a WS in higher level compositions. A WS-BPEL
composition contains four sections including declarations of: the relationships to
the external partners, the variables, handlers, and description of the business
process behavior. The major building blocks in WS-BPEL are the activities.
Furthermore, WS-BPEL provides concurrency and synchronization primitives.
Here is an example:

<flow> ← Structured activity
<links> ← Container
<link name="checkFl-BookFl"/> ← Element

</links>
<invoke name="checkFlight" . . . > ← Basic activity
<sources> ← Container
<source linkName="checkFl-BookFl"/> ← Element

</sources>
</invoke>
<invoke name="checkHotel" . . . />
<invoke name="checkRentCar" . . . />
<invoke name="bookFlight" ← Attribute . . . >
<targets> ← Container
<target linkName="checkFl-BookFl" />

</targets>
</invoke>

</flow>

4 MT implementation and architecture

Firstly, it is mentioned a general implementation of MT, presented in [4]. The se-
quence is: Choose the initial test suite, select adequate MRs, generate the follow-
up test suite applying MRs to initial test suite, execute the program with initial
and follow-up test cases, compare the result and finally, improve the program
correcting the detected errors, select new test cases and/or new MRs enhanced
to successive iterations.
The goal is to implement MT to test WS-BPEL compositions. Therefore, it is
necessary to take into account the peculiarities of this language and the compo-
sitions. Figure 2 describes the particular architecture lightly improved to include
MuBPEL [6], a mutation tool to validate the technique. MuBPEL is a mutation
testing tool for WS-BPEL 2.0. It can be used to evaluate the quality of a test
suite by checking if it can tell apart a mutant from the original program. Mu-
tants are slightly modified (mutated) versions of the original program in which
a single syntactical change has been made: for example, ”4 + 5” may have been
changed to ”4− 5”or”4 + 6”. In this way, MuBPEL is used to validate the MT
technique. If a test case does not satisfy a MR, an error is detected (a mutant
is killed).
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Inputs

  Outputs

BPELUnit

SOAP
messages

Results 
from follow-up

test cases 
execution

WS-BPEL 
engine

 original WS-BPEL
process

Source test suite

Follow-up 
test cases

MRs Specification 

Analyzer 

Follow-up test cases
generator

Comparison step

Multiple executions
comparison

Comparison
results

MuBPEL

Results 
from successful

test cases

Mutants alive 

Successful test
cases

Rest of Mutants 

MuBPEL

Execution
step

Analysis and
property
obteinment

Fig. 2. Architecture to apply MT in WS-BPEL

A prototype was built following this arquitecture and analysing some com-
positions to obtain the properties. The MRs were designed and implemented by
hand for each composition. Besides in previous works [2] and [3] that proto-
type was applied to some case studies with promising results. However, both the
composition analysis and the obtained MRs were processed by hand.

Some MT applications on the literature are about problems or program whose
properties are known previously. For instance, there are numerous works about
machines learning applications or mathematical functions [8], [12]and [7]. This
step is a challenge for WS-BPEL compositions. Several alternatives are proposed
in the following section.
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5 Alternatives to analyse the composition

Our goal is scanning every composition and to extract relevant information that
assesses the framework to design and implement MRs. So somehow, this step
makes easy generating MRs. For this purpose, we offer some possibilities (not
exclusive):

1. Up the bussiness level (bussines rules)
2. Use Takuan [11] (invariant generator to WS-BPEL compositions)
3. Create a new analyzer to extract other information

The first option does not appear simple or applicable (The usual approach is
the inverse step). The natural step goes in the inverse order. This requires work-
ing on the bussiness level to extract the composition behaviour, implementing
properties and applying them.
With respect to the second option, Takuan is an open-source WS-BPEL dy-
namic invariant generator which can infer invariants from WS-BPEL process
definitions. It generates relevant information, but perhaps too simple for our
purpose. For instance, there are some invariants from Loan Approval composi-
tion as follow:

loanApprovalProcess. process1 sequence1:::EXIT
request.amount == orig(request.amount)

request.amount one of { 1500, 15000, 150000 }
risk.level one of { ”high”, ”low” }

It would be necessary to combine them to obtain information useful for MR im-
plementation. So, they could be complemented with the third option, developing
a new application to extract information to asses the MR implementation. The
goal of the third option is to locate key values and expressions in every compo-
sition to determine the properties to build. For example, a numeric constant in
a condition could lead to an arithmetic property or a logical expression could
lead to a logical relation between some test cases values.

6 Conclusions and future work

WS-BPEL business processes are considerably increasing in last years. For this
reason, it is important the development of techniques that allow to test this
type of software. Due to the language nature, specific to WS, it is necessary to
implement alternatives tecniques to test this kind of compositions.
In addition, MT has been implemented in different languages efficiently and
applications have been tested on various study fields such as medicine or bioin-
formatics. Actually, more than 80 papers have been published about this subject.
Selection of adequate MRs is an important issue to this technique, so we ought
to consider the problem context and the structure of the program under test.
A testing framework architecture to apply MT in WS-BPEL compositions is
being built. Further some possibilities to guide the property identification and
implementation have been presented. The future work includes to implement all
steps and compare with other techniques.
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Abstract. One of the main goals of Semantic Web is to make all avail-
able information machine-readable and understood by other machines.
For these, ontologies are key elements that will enable us to exploit all
the advantages. Ontologies try to model the world in order to represent
all web information. But, for general purposes, this is too broad and am-
bitious goal for only a single ontology or platform. In order to easy the
creation of the ontology we reduce the scope only to news extracted from
city councils web pages.
In this paper, we present a project where information and data are col-
lected from webs and processed by means of Formal Concept Analysis
to align it to an ”ad-hoc” ontology.

Keywords: Knowledge extraction, Formal concept analysis, Semantic
Web

1 Introduction

As the W3C establish in its web page: ”The Semantic Web[2] provides a common
framework that allows data to be shared and reused across application, enterprise,
and community boundaries... In order to achieve these goals, traditional web
should be translated into data or machine readable documents, located by URIs,
and they are also be related to others. Semantic Web technologies can be used in
a variety of application areas. Our interest is focused on information integration,
where information from different sources can be organized to enhance its access,
organization, etc.

Nowadays, Open Government Data (OGD) is other important emerging
trend that merges the Open Data foundations with Public entities. OGD are
data produced by or commissioned by government and its intended for freely
used, reused and redistributed by anyone. It has great benefits as transparency,
social and commercial value and let participatory Governance.

? Partially supported by TIC-6064 Excellence project (Junta de Andalućıa) and
TIN2013- 41086-P (Spanish Ministry of Economy and Competitiveness), cofinanced
with FEDER funds
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Semandal is a platform that tries to apply all concepts about Semantic Web
and Open Government Data on the municipalities of Andalućıa, Spain. This
scope was chosen to reduce the dimensions of vocabularies, ontologies, and, even,
databases. Semandal extracts the information from the traditional web pages
and transform it into knowledge and republish it by means of an API and a
structured format (machine readable). Even this, Semandal provides a mobile
app to let user to access this information, but this is out of scope of this paper.

To transform information into knowledge we use Formal Concept Analysis[1]
(FCA). FCA is a non supervised clustering technique which, from formal defini-
tions, can construct concept lattices and set of rules which represents informa-
tion.

Semandal’s architecture is depicted in fig 1, where main modules can be dis-
tinguished and will lead the structure of our paper (only two firsts): Extraction,
Classification and re-publishing.

Fig. 1. Semandal’s Architecture

1.1 Formal Concept Analysis

A useful bridge between Semantic Web and knowledge extraction could be For-
mal Concept Analysis (FCA) [1].

According R. Wille, FCA mathematizes the philosophical understanding of
a concept as a unit of thought composed by two parts: the extension and the in-
tension. The extension covers all objects (documents) belonging to this concept,
while the intension comprises all common attributes (tags) valid for all the ob-
jects under consideration. It also allows the computation of concept hierarchies
out of data tables, and it is also used for ontology mining from folksonomies.
Several applications from FCA to tagging, folksonomies and semantic tasks have
been developed (see [6]).

We represent a formal context as M = (O,A, I), which consists of two sets,
O (objects) and A (attributes) and a relation I ⊆ O × A. Finite contexts can
be represented by a 1-0-table (representing I as a Boolean function on O × A).
Basic FCA logical expressions are implications between attributes, that is, a
pair of sets of attributes, written as Y1 → Y2, which is true with respect to
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M = (O,A, I) and is defined as follows. A subset T ⊆ A respects Y1 → Y2 if
Y1 6⊆ T or Y 2 ⊆ T . We say that Y1 → Y2 holds in M (M |= Y1 → Y2) if for
all o ∈ O, the set o′ respects Y1 → Y2. In that case, we say that Y1 → Y2 is an
implication of M .

Every implication has also associated some properties, e.g. support. Support
is defined as the number of objects that contain all attributes from Y1 and holds
the implication.

2 Knowledge extraction and integration

One of the main goals of Semantic Web is information integration from different
sources and, in our case, we start with a file of municipalities, obtained from
INE3, written in XLS format. From these, we develop software to connect to
several APIs, from Google, Wikipedia, etc.. From Google Search we locate the
web page address for all municipalities and, in some cases, where disambiguation
is needed, we use Wikipedia to achieve it. Also we used other APIs to extract
the geolocation, population, extension, etc...

After all web addresses were collected we found a big challenge, news extrac-
tions. All web pages were organized in really different ways which makes this
task really hard. Based on most common patterns, we found up to 7 different
clusters of similar organizations, and we built an extractor for each one.

Some of them, based on page’s structure or news content, can extract the cat-
egory associated to news, classified by publishers (supposed to be valid). Other
extractors were not able to do it. From these, we obtained a set of classified and
other unclassified news, which are quite appropriate to apply machine learning
techniques.

3 Categories selection

From the set of classified news, we study the set of categories to remove any
possible mistake.

First task was to remove typos, plurals or abbreviations, grouping words
based on Levenshtein distance which are closer than 3, obtaining a set of cate-
gories not too big and working.

In order to semantize as much content as possible, we searched for a hierarchy
or ontology where map our set of categories soundly, but we did not find any one
which fits with our needs about municipalities news. To solve this, we created an
”ad hoc” categories’ hierarchy (fig. 2) where also some of extracted categories
are removed (out of meaning in our scope) and merging some of them with the
same meaning. Needed super-classes are added too.

From this hierarchy, we reclassify all news applying it: aligning categories to
hierachy’s concepts and adding all super-classes.

3 Instituto Nacional de Estad́ıstica.(National Institute of Statistics)
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Fig. 2. Hierarchy of categories

4 Classification of information

Now, we are able to classify all news which were previously unclassified from its
own content and other classified news. From these news, we planed to build a
classifier based on words contained into the text. Firstly, we remove non signifi-
cant words, as prepositions, articles, own names, numbers, etc...

Secondly, we calculated the relative weights of each word in the categories
where they appear to obtain the significance of it into the category. After, we
calculated the average of weights for each category and, if this number is high
means that the word is too common in all categories and we should remove it.
Other considered option, but with similar results we based on [3]

If we create a graph with resulting words connecting them and categories,
setting each edge’s weight to calculated frequency value. This graph is shown in
fig. 3.

Fig. 3. Categories - Words

As we can see, there are words that define categories fairly well, but others
remain poorly relevant. Nevertheless, we think this set of words is good enough
to implement the classifier.
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4.1 Formal Concept Analysis

Construction of classifier we made by means of a set of rules obtained applying
Formal Concept Analysis technique. As above, we need to build a formal context
to get a concept’s lattice, as first step, which we can take as our first emergent
ontolgy prototype about news, and , finally, a set of association rules which will
be the responsible to classify news.

The formal context considered classified news as objects and relevant words
and extracted categories as attributes. This will infer a set of attribute rules
(with support and confidence) which, applied to unclassified news it will infer
a new set of categories. Each new set of categories will be the new assigned to
each news. An example of this context is shown in fig. 4.

Fig. 4. Formal context

5 Experiments

For our experimentation, we had to choose a proper subset of news, since the
total number of news is huge. We prepared some experiments to find out an
affordable amount of size or time in order to obtain sound results.

We built 3 contexts, A, B and C, with different number of objects and at-
tributes obtaining a number of rules which grow exponentially, as shown in table
1. In order to reduce this number of rules, we only considered as valid rules (Clas-
sif) that ones which have a support > 0 and have, at least, one category on the
right side of the rules.

To build the expert system to generate new categories, we translate the
rules into a CLIPS[4] format and we run it by means of a Jess[5] program, also
developed by us.

Finally, we test the expert systems with 2 random news to check its sound-
ness. News are in spanish, because of all database is focused on Spanish munic-
ipalities.
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Context Attributes Objects Rules Classif.

A 145 133 7412 2650
B 208 258 26344 9813
C 257 372 66910 53898

Table 1. Size of experiments

[Noticia 1] “El novillero de Écija Anto-
nio David, proclamado triunfador de la
V feria de novilladas de promoción la
granada de plata” 4

[Noticia 2] “El ayuntamiento da luz
verde para la construcción de otras 75
viviendas protegidas”5

A: Turismo, Juventud
B: Turismo, Cultura
C: Festejos

A: Vivienda
B: Turismo, Servicios sociales
C: Servicios sociales, Obras

6 Remarks and future works

Building a platform for extracting and processing information is a really hard
task for machines, even when it is limited in scope, that still needs some work.
Nonetheless, we have shown, in this paper, that FCA could be a useful tool
to build classifiers that would allow us to transform extracted information into
knowledge in an affordable way with soundness.

There are still other tasks within this platform which are really relevant for
final success, as the acquisition of municipality’s general information, not only
news, it means, information about organizational structure, contacts, plenary
sessions, etc... . From knowledge point of view, next step should be a deep work
on words, using networks of concepts, as WordNet, to align them to the network
and integrate in some RDF Open Data catalog.
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Abstract. In this paper, we study the directness property of implica-
tions in formal concept analysis. We show how dichotomously split the
implications in two subsets according to their premise closure. Thus, we
define a new directness paradigm strongly based on a separated treat-
ment of the two implication subsets and how to compute the proposed
dichotomous direct implicational system from a set of implications.

1 Introduction

In Formal Concept Analysis (FCA), closure operators are one of the most ba-
sic notions. These operators allow to solve important exponential problems in
different areas such as formal concept analysis, AI, databases, etc.

Moreover, closure operators are directly related to implications. K. Bertet
points to a good direction in [3] where Implicational Systems (IS) are highlighted
as convenient tools to handle a closure system. So, it makes sense that the search
for the efficiency in the set closure computation is a major challenge [1].

In [4] K. Bertet et al. establish specific properties to achieve the mentioned
goal. The properties that they considered is the directness and optimality, that
is, the computation of the closure of an attribute set can be performed in one
traversal of the implicational set and none implication can be removed without
losing this property. Then, progressing this line, K. Adaricheva et al. [1] propose
the so called D-basis as a subset of the basis proposed in [4], which is direct as
well and has less number of implications.

In this paper, we are working in the design of new IS definitions suitable to
describe closure system. We pay attention to the closure of each premise to make
a separate treatment of those ones whose closure is the total set of attributes to
provide an improvement in the performance of closure methods. Moreover, the
premise of these implications fit exactly with the notion of keys in database and
generators in FCA.

Here, we propose a new definition of IS named dichotomous IS whose main
characteristics is the separate treatment of implications depending on the closure
of its premise. Moreover, we introduce the notion of direct dichotomous basis
(DD-basis) and illustrate its advantages.

2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a formal framework oriented to data anal-
ysis and knowledge discovering. FCA extracts knowledge from the information

L. Kóczy, J. Medina (Eds): ESCIM 2015. 978-84-608-2823-5 186



presented in a formal context providing equivalent ways of representation of
knowledge: concept lattices and implicational systems. We focus on the second
ones because they can be managed and depurated by using logic.

The relationship between a set of objects and a set of attributes are described
using a formal context as follows:

Definition 1. A formal context is a triple K = (G,M, I) where G is a finite set
whose elements are named objects, M is a finite set whose elements are named
attributes and I ⊆ G×M is a binary relation. Thus, (g,m) ∈ I means the object
g has the attribute m.

The concept of implication is a central point in this work together with a
special case of implication introduced as follows:

Definition 2. Let K = (G,M, I) be a formal context and A,B ∈ 2M . The
implication A → B holds in K if every object g ∈ G satisfies the following:
(g, a) ∈ I for all a ∈ A implies (g, b) ∈ I for all b ∈ B.

Given a subset X ⊆ M , X is a key if the implication X → M holds in K. An
implication X → Y such that X is a key will be named a key implication.

For this work, we only present a brief summary (only the rules) of the Sim-
plification Logic (SL

FD
), an equivalent logic to Armstrong’s Axioms [2] but more

adequate to develop automated method for implications. See [5, 8] for a more
detailed presentation of SL

FD
its semantic, and how remove redundancy and

compute closures using directly the SL
FD

.
It is assumed to be familiar with notions of the derivation of an implication

from an IS, the semantic entailment and the equivalence between two ISs.

Definition 3 (Rules of SL
FD
).

Reflexivity as axiom scheme and the following inference rules named frag-
mentation, composition and simplification are considered in SL

FD
.

[Ref]
A→ A

[Frag]
A→ BC

A→ B
[Comp]

A→ B, C → D

AC → BD
[Simp]

A→ B, C → D

A(C-B)→ D

Definition 4. Let Σ ⊆ LS be an IS and X ⊆ S. The closure of X wrt Σ is the
largest subset of S, denoted X+

Σ , such that Σ ` X → X+
Σ .

Finally, the notion of key, which plays a central role in this paper, can be
characterized in terms of ISs. Thus, we are going to say that an attribute set X
is key with respect to an IS Σ if it is a key with respect to any model of Σ.

Proposition 1. Let Σ ⊆ LS be an IS and X ⊆ S. The following conditions are
equivalent:

1. X is a key with respect to any model of Σ.
2. Σ ` X → S.
3. X+

Σ = S.
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3 Dichotomous set of implications

Fist, we emphasize that although some closure algorithms to solve these problems
have a linear cost, due to its exhaustive use in some NP algorithms, a minor gain
in the closure performance entails a major advantage for these complex methods.

Now, the goal is to remain the advantage of the directness which establishes
that the closure of an attribute set may be computed with just one traverse of
the set of implications. Thus, our approach is to provide an alternative direct IS
such that it can be obtained with less cost.

The study of directness demands the design of closure operators for attribute
sets. Thus, other authors who have studied different kinds of direct basis define
closure operators for these bases: the direct-optimal basis [4] and the D-basis [1].

Now, we introduce the notion of dichotomous set of implications and a two-
fold operator suitable for its management.

Definition 5 (Dichotomous set of implications). A pair of implicational
sets 〈Σ∗, Σk〉 is named a dichotomous set of implications if all A→ B ∈ Σk are
key implications.

We define the σ operator for dichotomous ISs as a composition of two un-
derlaying operators: σ〈Σ∗,Σk〉 = κΣk ◦ πΣ∗1 where

κΣ(X) =

{
M if A ⊆ X for some A→ B ∈ Σ
X Otherwise

Assuming 〈Σ∗, Σk〉 being a dichotomous set of implications, we have that
σ〈Σ∗,Σk〉 is isotone and extensive. The directness property can also be considered
in this framework by means of the idempotence of the operator σ〈Σ∗,Σk〉.

Definition 6. A dichotomous set of implications 〈Σ∗, Σk〉 is said to be direct if
σ〈Σ∗,Σk〉 is a closure operator.

The following proposition leads the way to characterize a direct dichotomous
set of implications and the next corollary characterizes the directness in our
dichotomous approach.

Proposition 2. Let 〈Σ∗, Σk〉 be dichotomous set of implications. For all n > 0
we have that σn〈Σ∗,Σk〉 = κΣk ◦ πnΣ∗ .

Corollary 1. A dichotomous set of implications 〈Σ∗, Σk〉 is direct if and only
if Σ∗ is a direct IS.

In this section we have focused on the directness property. Nevertheless, this
is not an isolate property and it is usually related to other properties leading to
the notion of basis, which constitutes the main issue of the following section.

1 πΣ is the operator defined in [3]: πΣ(X) = X ∪ {b ∈ B|A ⊆ X and A→ B ∈ Σ}
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4 DD-basis

In this section we are interested in the improvement of ISs demanding some
optimality or minimality properties. The property related to the notion of basis
is minimality, which means that if any implication is removed from the set of
implications, it is not equivalent to the initial one. But in this paper, the property
that we need is the optimality: an IS is optimal if there is not an quivalent IS
with less size, where the size is: ‖Σ‖ =

∑
A→B∈Σ(|A|+ |B|).

The above properties are used in the literature to introduce different notions
of basis, but another property must be introduced. The well-known Duquenne-
Guiguess basis was introduced in [7] being a minimum (there is not another
equivalent IS with less cardinality), but no direct, IS. In this paper we are inter-
ested in those basis strongly related with the directness property. In this way,
Bertet et al. propose the following definition adding the optimality property.

Definition 7 (Direct-optimal basis [3]). An IS Σ is named a direct-optimal
basis if Σ is direct and any other equivalent direct IS has a greater size.

Alternatively, K. Adaricheva et al. [1] introduce another basis related to the
directness property and taking into account the order of the implications: the
D-basis (see [1] for more details). A relevant issue in the area of direct basis is
the cost of its computation. That is why we provide here an alternative direct
basis definition in the framework of the dichotomous ISs.

Definition 8 (DD-basis). Let 〈Σ∗, Σk〉 be a dichotomous set of implications,
we say that it is a dichotomous direct basis, briefly DD-basis, if it is minimal
and σ〈Σ∗,Σk〉 is a closure operator.

The main advantage of the proposed DD-basis with respect to both alterna-
tive direct bases, is that our approach reduces the size of the subset of impli-
cations withstanding the exponential cost of the basis construction process, as
the following section shows. This reduction comes from the removal of the key
implications in the exponential task.

5 A method to compute the DD-basis

Most of the knowledge discovering methods in FCA returns a Duquenne-Guigues
basis. In this section we focus on the design of an efficient method to compute a
DD-basis equivalent to a given Duquenne-Guigues basis.

The use of the dichotomous set of implications is motivated by the idea of
reducing the input of the costly task in the basis computation method. Corol-
lary 1 establishes that a dichotomous set of implications is direct if and only if
the first component is direct. Thus, we begin this section with the description
of the transformation method of the first component Σ∗ into the correspond-
ing equivalent direct-optimal basis by executing a modification of the algorithm
we presented in [9]. Now, we briefly describe this algorithm. In a first stage
the method simplifies implications with redundant attributes in both left and
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right hand sides, transforming Σ∗ into its equivalent reduced one, denoted Σ∗r ,
requires just the application of the rules of the SL

FD
.

Later, the algorithm exhaustively applies the inference rule called strong
simplification, [sSimp], that covers directness without losing reduceness:

[sSimp]
A→ B,C → D

AC-B → D-(AB)
, B ∩ C 6= ∅ 6= D r (A ∪B)

The thoroughly application of the [sSimp] rule to the set Σ∗r provides an equiv-
alent direct-reduced IS, named Σ∗dr, being the smallest IS fulfilling the following
conditions: Σ∗r ⊆ Σ∗dr and Σ∗dr is closed under the [sSimp] rule.

Once we have got a direct-reduced IS, we can further depurate it by removing
extra-attributes and extra-implications thanks to the application of the rules of
SL

FD
. The target IS for such a depuration step is said to be simplified holding

the following conditions: for all A,B,C,D ⊆M ,

1. A→ B, A→ C ∈ Σ implies B = C.
2. A→ B, C → D ∈ Σ and A  C imply C ∩B = ∅ = D ∩B.

Thus, for the treatment of Σ∗, the Algorithm DObasis has three main stages,
each one consisting in the transformation of a previous IS into an equivalent one
fulfilling directness and optimality at the end of the process: the direct-optimal
basis (see [9] for the proof of this assertion).

In the following, we are going to use this function to transform the first
component of a dichotomous IS and compute its equivalent direct-optimal basis.

We begin with the transformation of the original set of implications into a
dichotomous one splitting off the treatment for key implications and the others,
which provides a better performance of the basis construction method. Note
that in Duquenne-Guigues basis key implications are those A → B that satisfy
A ∪B = M . These implications have to belong to the second component of the
dichotomous set of implications.

Algorithm 1 below structures the above transformation in two consecutive
stages: the splitting process (discerning what implications are keys) and then, the
direct-optimal transformation for the first component. The following example
illustrates the execution of Algorithm 1.
Example 1. Let Σ = {a → d, ce → g, cg → e, de → g, bg → acde, cd →
abeg, abd → ceg, adeg → bc} be an IS. In the first stage, we separate the key
implications with a linear cost rendering: 〈Σ∗, Σk〉 = 〈{a → d, ce → g, cg →
e, de→ g}, {bg → acde, cd→ abeg, abd→ ceg, adeg → bc}〉.

In the second stage, we apply Function DObasis to get a direct-optimal basis
equivalent to Σ∗: Σ∗do = {a→ d, ae→ g, ce→ g, cg → e, de→ g}.

Finally, we joint both components of the dichotomous set of implications to
get a DD-basis: ΣDD = 〈{a → d, ae → g, ce → g, cg → e, de → g}, {bg →
acde, cd→ abeg, abd→ ceg, adeg → bc}〉.

6 Conclusions and future works

In this work, we have presented a new definition for ISs in which we character-
ize two sets of implications with specific properties. In this way, a new direct
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Algorithm 1: DD-basis

input : A Duquenne-Guigues basis ΣDG on M
output: The DD-basis ΣDD on M
begin

/* Stage 1: Generation of Σ∗ and Σk by disjointing of ΣDG */

Σ∗ = ∅, Σk = ∅
foreach A →ΣDG B do

if A ∪B = M then add A→ B to Σk;
else add A→ B to Σ∗;

/* Stage 2: Generation of Σ∗
do by executing the above function of Σ∗ */

Σ∗
do := DObasis(Σ∗)

/* Output preparation: Generation of Σdd by jointing Σ∗
do and Σk */

ΣDD := 〈Σ∗
do, Σ

k〉
return ΣDD

basis and the algorithm that renders this new basis, called DD-basis, have been
proposed. The main goal we have achieved is the reduction of the cost of com-
puting a direct basis focusing in one subset of the IS: the first component of the
dichotomous set. As future work we are going to extend the proposed algorithm
when the input was any IS and make a comparative among algorithms related
to directness property.

Acknowledgment

Supported by grant TIN11-28084 and TIN2014-59471-P of the Science and Inno-
vation Ministry of Spain.

References

1. K. V. Adaricheva and J. B. Nation and R. Rand, Ordered direct implicational basis
of a finite closure system, International Symposium on Artificial Intelligence and
Mathematics, ISAIM 2012.

2. W W. Armstrong, Dependency structures of data base relationships, Proc. IFIP
Congress. North Holland, Amsterdam: 580–583, 1974.

3. K. Bertet, M. Nebut, Efficient algorithms on the Moore family associated to an IS,
DMTCS, 6(2): 315–338, 2004.

4. K. Bertet, B. Monjardet, The multiple facets of the canonical direct unit implica-
tional basis, Theor. Comput. Sci., 411(22-24): 2155–2166, 2010.
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Abstract. The tail behaviour of a probability distribution has been
widely studied in order to provide robust tools to deal with risk in dif-
ferent fields, such as financial or insurance risk, best known as actuarial
theory. In this paper, a new functional skewness measure from the com-
parative study of the left and right tails of a distribution is provided.
The new measure is based on the convex transform order, which let us
compare whenever one distribution has heavier tail than another. We
study the properties of the functional measure and we shall prove that
it allows to detect a tail property called symmetry in tails.

Keywords: skewness, asymmetry, heavy-tailed, convex transform or-
der, risk.

1 Introduction

Asymmetry of a continuous distribution is commonly described as skewness,
and it has been widely studied in order to measure meaningful differences in the
behaviour of the distribution in respect to some location parameter as the mean,
median, mode, etc. It is a general practice to make assertions about the symmetry
or asymmetry of a probability density function based on scalar measures. Since
most of them use all the information of the distribution to summarize in a single
number, they do not capture all the meaning of being a symmetric distribution.
There are several scalar measures used to quantify the degree of skewness of a
distribution, some of most known are [1], [4], [9] and [11].

Asymmetry of probability distribution has been also studied applying a func-
tional approach. Since the symmetry is a functional concept, it seems suitable
to describe asymmetry using asymmetry functions. A partial list of the most
important measures taking a functional approach include [2], [3], [5], [6], [7] and
[8].

Since asymmetry is essentially influenced by the tail behavior of density func-
tion, this lead us to study the symmetry of a distribution from the comparative
study of its tails. The tail of a distribution is the portion of distribution corre-
sponding to large or small values of the random variable and its study is relevant

L. Kóczy, J. Medina (Eds): ESCIM 2015. 978-84-608-2823-5 192
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in actuarial theory, insurance risk, financial risk, etc. In these fields, those dis-
tributions that tend to assign higher probabilities to larger values are specially
important, they are known as heavy-tailed. The weight of a tail is a property
that can be interpreted as a relative concept (the F distribution has a heavier
tail than another G) or as an absolute concept (if F verifies a certain property
then F is classified as heavy-tailed).

In this paper, we propose a new functional measure that let us compare the
left and the right tail of a distribution F . This functional is based on the convex
transform order defined by Van Zwet in [10] and it measures which tail is heavier
than the other.

The convex transform order is closely related to skewness and shape of the
tail distribution. It arises from the need to state when a non-negative distribu-
tion G is more skewed to the right than another non-negative distribution F .
Given two non-negative distributions F and G we say that F is smaller than
G in the convex transform order, written F ≤c G if, and only if G−1F (x) is a
convex function in its domain. This means that the G distribution is obtained
throughout “stretching” the F distribution and thereby there exist a change
of shape between both distributions. This change of shape involves in how the
probability is distributed, in this case, the G distribution displace more prob-
ability than the F distribution to the right therefore it is accepted that the G
distribution is heavier than the F distribution.

The main idea is to define a skewness function for probability distributions
from the comparative study of its tails, interpreting them as non-negative vari-
ables. Before starting, we need to define the left tail distribution and the right
tail distribution associated to a distribution F from a quantile F−1(u). From
here to forward we will denote F−1(u) = xu.

2 Definitions and properties of the functional measure of
skewness

Definition 1. Let X be a random variable which follows a distribution F , and
let u be a number in (0, 12 ), then we define the left tail distribution from the
quantile xu of X as

(X − xu)− =

{
xu −X X ≤ xu

0 other case

and the right tail distribution from the quantile x1−u of X as the variable

(X − x1−u)+ =

{
X − x1−u X ≥ x1−u

0 other case
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A new functional measure of skewness based on the convex transform order 3

Let X be a random variable with probability distribution F (see Figure 1),
and let L = (X − xu)− and R = (X − xu)+ be its left and right tails from the
quantile xu and x1−u, respectively. Both variables are non-negative (see Figure
2) and their cumulative distribution function take the value 1 − u when these
variables are null.

Fig. 1. Probability density function of X ∼ F

We propose to compare L and R using the convex transform order. However,
the convex transform order is a hard condition to be verified, thereby we will
use a condition which is implied by the convex transform order. This condition
appears in a natural way from a equivalent condition of the convex transform
order. We denote FL and FR as the probability distribution function of L and
R, respectively. If F−1L (FR(x)) ∈ C1(R+), then

L ≤c R⇔ (lv − lp)fL(lv) ≥ (rv − rp)fR(rv) ∀p, v ∈ (0, 1).

The above characterization implies the following condition,

∫ 1

1−u
(lv − l1−u)fL(lv)dv ≥

∫ 1

1−u
(rv − r1−u)fR(rv)dv.

⇔
∫ u

0

(xu − xt)fX(xt)dt−
∫ 1

1−u
(xv − x1−u)fX(xv)dv ≥ 0.

We are now in condition to define a new functional measure of skewness.
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4 Antonio Arriaza-Gómez, Miguel A. Sordo, and Alfonso Suárez-Llorens

Fig. 2. Plots of probability density function of (X −x1−u)− and (X −x1−u)−, respec-
tively

Definition 2. Let X be a random variable and F its cumulative distribution
function, then

SX(u) = ϕ−X(u)− ϕ+
X(1− u), ∀u ∈ (0,

1

2
).

where ϕ−X(u) =

∫ u

0

(xu−xv)fX(xv)dv and ϕ+
X(1−u) =

∫ 1

1−u
(xv−x1−u)fX(xv)dv

are called the left and right skewness measures, respectively.

Definition 3. We define the H set as the set of all continuous random variables
X, with probability density function fX , which verify that:

1. E[fX(X)] =

∫ +∞

−∞
f2X(x)dx < +∞.

2. E[XfX(X)] =

∫ +∞

−∞
xf2X(x)dx < +∞.

It has been generally accepted that any measure γ of skewness should satisfy
the followings conditions:

1. γ(F ) = γ(aF + b) for all a > 0 and all b.

2. γ(F ) = −γ(−F ).

3. If F ≤c G, then γ(F ) ≤ γ(G). Here, ≤c denotes the convex transform order.

Proposition 1. Let X ∈ H be a random variable, the functional measure of
skewness SX verifies the three previous conditions.
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A new functional measure of skewness based on the convex transform order 5

Proposition 2. Let X ∈ H be a random variable and fX its probability density
function, then

If fX is a decreasing function in its domain =⇒ SX(u) ≥ 0 ∀u ∈ (0, 12 ).

If fX is an increasing function in its domain =⇒ SX(u) ≤ 0 ∀u ∈ (0, 12 ).

If fX is a symmetric function =⇒ SX(u) = 0 ∀u ∈ (0, 12 ).

Corollary 1. Let X,Y ∈ H be two random variable, then

If X is symmetric
X ≤c Y

}
⇒ SY (u) ≥ 0 ∀u ∈ (0,

1

2
).

The new skewness measure compares both tails of a distribution from any
quantile xu and its symmetric x1−u. Thereby, it let us detect an interesting
property called symmetry in tails, see Figure (3). Also the following result shows
that the functional measure of skewness is bounded from a certain value u0 ∈
(0, 1) for unimodal distributions.

Fig. 3. Probability density function of a tail symmetric distribution

Proposition 3. Let X ∈ H be a random variable with F an strictly increasing
function. If X is an unimodal distribution then there exist u0 ∈ (0, 12 ) such that

−u
2

2
≤ SX(u) ≤ u2

2
∀u ≤ u0.
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Abstract. Moderating the energy consumption and building eco-friendly
computing infrastructure is of major concerns in the implementation of
High Performance Computing (HPC) system, especially when a world-
wide effort target the production of an Exaflop machine by 2020 within
a power envelop of 20 MW. Tracking energy savings can be done at var-
ious levels and in this paper, we investigate the automatic generation
of energy aware software with the ambition to keep the same level of
efficiency, testability, scalability and security.
To this end, the Evo-LLVM framework is proposed. Based on the mod-
ular LLVM Compiler Infrastructure and exploiting various evolutionary
heuristics, our scheme is designed to optimize for a given input source
code (written in C) the sequence of LLVM transformations that should
be applied to the source code to improve its energy efficiency without
degrading its other performance attributes (execution time, parallel or
distributed scalability). Measuring this capacity is based on the combi-
nation of several metrics optimized simultaneously with Multi-Objective
Evolutionary Algorithms (MOEAs). In this position paper, the NSGA-
II algorithm is implemented within the Evo-LLVM yet the analysis of
more advanced heuristics is in progress. In all cases, the experimental
validation of the framework over a pedagogical code sample reveal a
drastic improvement of the energy consumed during the execution while
maintaining (or even improving) the average execution time.

Keywords: Performance evaluation, Energy-efficiency, HPC, Evolutionary Al-
gorithm, Fault-Tolerance Result-Checking

1 Introduction

Energy management has become a key challenge in the area of computing sys-
tems today. For large scale systems, such as data centers, energy efficiency has
proven to be the key for reducting all kind of costs related to capital, operational
expenses and environmental impact. Power drainage of a system is closely re-
lated to the type and characteristics of workload that the device is running. These
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characteristics refer to the way the workload utilizes different resources and com-
ponents of the system, such as CPU, memory, disc etc. Modern system design
now includes components that support energy management at various level, for
instance through a dynamic scaling of the power (or frequency) allocated to its
usage (DVFS for the CPU etc.) and/or an integrated way to handle idle state
for a more or less long period of time. In this paper, we take advantage of these
techniques and the corresponding sensors embedded within the Linux kernel to
estimate the average power consumption induced by the execution of a given
process. Combined with other metrics quantifying the inherent performance of
the execution, it is thus possible to design a Multi-Objective Evolutionary Algo-
rithm (MOEA) system able to evolve a given source code (called the reference
source in the sequel) to produce an set of energy-aware versions able to com-
pete from the pure execution time point of view with the initial performance of
the reference source. This idea led to the design of the Evo-LLVM framework
presented in this paper.

This article is organized as follows: section 2 details the background of this
work and reviews related works. Then, the Evo-LLVM framework is presented
in the section 3. Implementation details of the proposed framework are provided
in the section 3. The validation of the approach on a concrete benchmarking
code is expounded in the section 4 which details and discusses the experimental
results obtained. Finally, the section 5 concludes the paper and provides some
future directions and perspectives opened by this study.

2 Context & Motivations

Since the advent of high-level programming language, research in the compilation
domain have always seek to automate and find novel optimization techniques
to produce a compiled code that improve the running time. In this context,
many previous studies identified a large number of transformations that could
be applied to the different section of a source code to generate different and
hopefully improved version of the compiled executable. A reference summary of
these transformations, their effects and their respective application context is
described in [1]. Determining the optimal sequence of transformations to apply
to a given source code that would minimize the execution time over a given
computing system is proven to be an NP-complet [9] problem. It follows that all
modern compilers such as GCC (the the GNU Compiler Collection) or LLVM
rely on static heuristics involving a subset of transformations applied in an or-
der that grant, in general, good results n general while ensuring a bounded
compilation time [10]. Because of all these factors, the optimization operated by
compilers hardly produces "optimal" output in any sense, and may even impede
performances in some cases. It follows a considerable optimization work so as
to try a set of transformation potentially valuable. This time-consuming pro-
cess is generally performed by hand and requires expert engineering skills. The
current state-of-the-art tries to address optimization problem from a transverse
way, i.e. by means of automatic analysis schemes generally based on Evolution-
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ary heuristics. For instance, a genetic approach is done in [2] to optimize the
size of the output binaries. Also, the Acovea [8] framework (Analysis of Com-
piler Options via Evolutionary Algorithm) for gcc or Cole [7] investigates in
an automatic manner the best combination of compiler options leading to the
fastest executable program from a given source code. Complementary, recent
advances over a new kind of software development environment inspired from
Search Based Software Engineering (SBSE) [6] led to the definition of GISMOE
challenge (Genetic Improvement of Software for Multiple Objective Exploration)
[5]. The general idea is that it is possible to combine the recent advances in soft-
ware test data generation, genetic programming and multi objective optimization
to build a development environment capable of producing a Pareto program sur-
face that would help the software designer to navigate between different version
of the same program (typically the execution time, the memory usage and the
energy efficiency). The work proposed in this paper definitively offers the basic
building block able to propose a concrete answer to this challenge.

2.1 The LLVM Compiler Infrastructure

The LLVM compiler infrastructure project (formerly Low Level Virtual Ma-
chine) is a compiler infrastructure designed to be a set of reusable libraries with
well-defined interfaces. It is written in C++ and is designed for compile-time,
link-time, run-time, and "idle-time" optimization of programs written in arbi-
trary programming languages. LLVM was originally written to be a replacement
for the existing code generator in the GCC stack and many of the GCC front
ends have been modified to work with it. Widespread interest in LLVM has led
to a number of efforts to develop entirely new front ends for a variety of lan-
guages. The one that has received the most attention is Clang, a new compiler
supporting C, Objective-C and C++ supported by Apple. The core of LLVM is
the intermediate representation (IR), a low-level programming language similar
to assembly. IR is a strongly typed RISC instruction set which abstracts away
details of the target.

In this article, we propose to exploit the flexibility offered by LLVM to ma-
nipulate the IR modelization of a given source code to check the opportunity of
applying a sequence of supported transformations and evaluating the impact on
the energy efficiency of the produced executable. The choice of the transforma-
tion to apply and their order shall be governed by an evolutionary heuristic. The
validation of the approach shall be performed on a relevant set of benchmark
applications.

2.2 Evolutionary Algorithms (EAs)

EA is a class of solving techniques based on the Darwinian theory of evolution [3]
which involves the search of a population Xt of solutions. Members of the pop-
ulation are feasible solutions and called individuals. Each iteration of an EA
involves a competitive selection that weeds out poor solutions through the eval-
uation of a fitness value that indicates the quality of the individual as a solution
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to the problem. The evolutionary process involves at each generation a set of
stochastic operators that are applied on the individuals, typically recombination
(or cross-over) and mutation.

3 The Evo-LLVM Compiler Framework

int a = 89;
int b = 42;
void funcf(a,b)
{
   printf("%d", a);
   printf("%d", b);
}

myfile.c

LLVM parser

Initialisation of the population 
(copy of initial individual)

Intermediate Represenation (IR)

Evo-LLVM

myfile_opt1.c

Conversion
    to files

Evolutionary
  Algorithm

Evaluation

Selection

 Mutation
(Transfor-
mations)

Repro-
duction
Crossover

Population

3, 1, 67, 2

9, 56, 1

899, 7, 56, 42

9, 32, 1 3, 1, 67, 29, 56, 1

899, 7, 56, 42

myfile_opt2.c

myfile_opt3.js

PopulationPopulationPopulation

Fig. 1. Overview of Evo-LLVM framework, describing the full process of the genera-
tion of new representations of the code.

This section briefly review the Evo-LLVM framework as a natural extension
of the Shadobf framework proposed in [?]. The general code optimization process
operated by Evo-LLVM is illustrated in the figure 1: from the initial program P
to be analysed (myfile.c in the figure), a reference individual (in the EA sense)
Iref is generated that represents P. Then, a complete population of n individuals
is generated by randomly applying a mutation (i.e. an LLVM transformation) on
the reference individual Iref. The MOEA process (NSGA-II in the current state
of the implementation) then intervene to explore the search space induced by the
different objectives seek for the produced binaries, evaluate the population and
apply the genetic operators (mutation and cross-over). This permits to exhibit at
each generation non-dominated Pareto solutions, each of them representing a set
of derived (and hopefully more performant for all considered metrics) versions
of the program P that propose a good trade-off between each objectives i.e.
metrics.

The key characteristics of the Evo-LLVM framework are as follows:

– The C code is parsed using LLVM to produced the intermediate representa-
tion of the program (IR).
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– LLVM has 54 built-in transformations. These range from tail call elimination
(a method to optimize some recursive functions) to loop unwinding (reduc-
ing loop overhead). The order these transforms are applied can matter: for
example, dead instruction elimination might not find an unused instruc-
tion in an unoptimized program, but after a few passes of other transforms,
some instructions may be superfluous. This is important to keep in mind
when designing the evolutionary algorithm, specifically when deciding on
the crossover methods. Some of these may split up two transformations that
only work well in tandem. In all cases, the LLVM transforms are randomly
applied within Evo-LLVM individuals during the evolutionary operators;

– Throughout NSGA-II [4] (one of the reference selection algorithm for MOEAs
considered in our initial implementation), individuals are selected by taking
into account the non-domination criteria and the distance from one to the
others to guarantee a good diversity as well as the leading individuals of
the population. The concept of dominance is the following (in the case of
minimization): an individual I with the objectives values fobj(I) is said to
be dominated by J if

∀obj ∈ objectives, fobj(J) < fobj(I)

An individual is said to be non-dominated if it is not dominated by any
other individuals in the population. All the non dominated solutions of a
population are the approximated Pareto front of the problem. NSGA-II is
selecting all the non-dominated solutions of the population, and if the size
of the new population is lower than the maximum size, NSGA-II is selecting
again all the non-dominated solutions of the old population but this time
excluding the already selected Individuals.

– The performance metrics permits to evaluate each individuals.
– The IR model might be helpful to compute additional static metrics (se-

quential work, number of instructions).

4 Validation and Experimental Results

We have validated our approach a simple pedagogical example i.e. a quicksort
algorithm. It was chosen as it involves many sections in the code that are worth
optimizing: memory allocation, iterations, recursion and branching, all inter-
twined. However, the program is independent from the chosen algorithm, a few
changes in the configuration make it possible to run the optimization on any
algorithm.

For the sake of simplicity, we show here on short runs involving the simulta-
neous evolution of the power consumption along with the execution time when
the number of benchmarks per individual is set to 100. A brief overview of the
generated Pareto front is proposed.
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Fig. 2. Set of the 2D Pareto fronts approximation for the quicksort program using
NSGA-II and Evo-LLVM

The table 1 shows the characteristics of a set of individuals selected after
application of Evo-LLVM. In practice, we selected the individual which is the
closest to the median values of every individuals which are in the Pareto front,
allowing to have a good trade off between all the objectives. In all cases we
see that the selected individuals upon successive generations demonstrate an
interesting improvement in terms of power consumption while not degrading the
execution time.

Generation Power Execution time
2nd
reference 31.0262 70554.0

20th
best 9.3593 72573.0

45th
best 4.9078 70266.0

50th
best 4.9183 69694.0

Table 1. Energy and execution time comparison for generation 20,45,50 for selected
individuals after Evo-LLVM run.

5 Conclusion

The main objective of this work was to proceed to the automatic generation of
energy aware software while maintaining the same level of efficiency, testability
and scalability. As it is well-known, power drainage of a system is not a static
property that depends solely on hardware characteristics. Using energy aware
software will lead to significant reduction to the overall energy consumption.
The benefits will reach not only large scale computing systems or data canters
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but also home users that aim to a more efficient energy management. To this
end, the Evo-LLVM framework is proposed. Based on the modular LLVM Com-
piler Infrastructure and exploiting various evolutionary heuristics, our scheme is
designed to optimize for a given input source code (written in C) the sequence of
LLVM transformations that should be applied to the source code to improve its
energy efficiency without degrading its other performance attributes (execution
time, parallel or distributed scalability). Measuring this capacity is based on the
combination of several metrics optimized simultaneously with Multi-Objective
Evolutionary Algorithms (MOEAs). In this position paper, the NSGA-II algo-
rithm is implemented within the Evo-LLVM yet the analysis of more advanced
heuristics is in progress. Experimental results on a simple pedagogical program
demonstrated an 84.20% improvement on the average consumed energy while
not degrading the execution time.

Acknowledgments: The experiments presented in this paper were carried out
using the HPC facility of the University of Luxembourg.
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2 Instituto Superior Técnico, Universidade de Lisboa

3 ISCTE-IUL - Instituto Universitário de Lisboa
{hugo.rosa,joao.carvalho,ramon.astudillo,fmmb}@inesc-id.pt

Abstract. Microblogs, such as Twitter, have become an important socio-
political analysis tool. One of the most important tasks in such analysis
is the detection of relevant actors within a given topic through data min-
ing, i.e., identifying who are the most influential participants discussing
the topic. Even if there is no gold standard for such task, the adequacy
of graph based centrality tools such as PageRank and Katz is well doc-
umented. In this paper, we present a case study based on a “London
Riots” Twitter database, where we show that Katz is not as adequate
for the task of important actors detection since it fails to detect what we
refer to as “indirect gloating”, the situation where an actor capitalizes
on other actors referring to him.

Keywords: Page Rank, Katz, User Influence, Twitter, Data Mining

1 Introduction

Nowadays, there are 288 million active users on Twitter and more than 500
million tweets are produced per day [16]. The impact of Twitter on the Arab
Spring [5] and how it beat the all news media to the announcement of Michael
Jackson’s death [14], are just a few examples of Twitter’s role in society. When
big events occur, it is common for users to post about it in such fashion, that it
becomes a trending topic, all the while being unaware from where it stemmed
or who made it relevant. The question we wish to answer is: “Which users were
important in disseminating and discussing a given topic?”.

Determining user relevance is vital to help determine trend setters [15]. The
user’s relevance must take into account not only global metrics that include the
user’s level of activity within the social network, but also his impact in a given
topic [17]. Empirically speaking, an influential person can be described as some-
one with the ability to change the opinion of many, in order to reflect his own.

? This work was supported by national funds through Fundação para a Ciência e
a Tecnologia (FCT) under project PTDC/IVC-ESCT/4919/2012 and funds with
reference UID/CEC/50021/2013.
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While [12] supports this statement, claiming that “a minority of users, called
influentials, excel in persuading others”, more modern approaches [4] seem to
emphasize the importance of interpersonal relationships amongst ordinary users,
reinforcing that people make choices based on the opinions of their peers. In [2],
three measures of influence were taken into account: “in-degree is the number
of people who follow a user; re-tweets mean the number of times others forward
a user’s tweet; and mentions mean the number of times others mention a user’s
name.”. It concluded that while in-degree measure is useful to identify users who
get a lot of attention, it “is not related to other important notions of influence
such as engaging audience”. Instead “it is more influential to have an active
audience who re-tweets or mentions the user”. In [7], the conclusion was made
that within Twitter, “news outlets, regardless of follower count, influence large
amounts of followers to republish their content to other users”, while “celebri-
ties with higher follower totals foster more conversation than provide retweetable
content”. The authors in [11] created a framework named “InfluenceTracker”,
that rates the impact of a Twitter account taking into consideration an Influence
Metric, based on the ratio between the number of followers of a user and the
users it follows, and the amount of recent activity of a given account. Much like
[2], it also shows that “that the number of followers a user has, is not sufficient
to guarantee the maximum diffusion of information (...) because, these followers
should not only be active Twitter users, but also have impact on the network”.

With the previous definitions of influence in mind, we propose a graph repre-
sentation of user’s influence based on “mentions”. Whenever a user is mentioned
in a tweet’s text, using the @user tag, a link is made from the creator of the
tweet, to the mentioned user, regardless of it being a retweet or a conversation.
For example, the tweet ”Do you think we can we get out of this financial crisis,
@userB?”, from @userA, creates the link: @userA −→ @userB.

2 Network Analysis Algorithms

In graph theory and network analysis, the concept of centrality refers to the iden-
tification of the most important vertices’s within a graph, i.e., most important
users. We therefore define a graph G(V,E) where V is the set of users and E is
the set of directed links between them. Arguably the most well known centrality
algorithm is PageRank [8]. It is one of Google’s methods to its search engine
and uses web pages as nodes, while back-links form the edges of the graph. It is
defined by Equation 1 as PR(vi) of a page vi.

PRvi =
1− d
N

+ d
∑

vj∈M(vi)

PR(vj)

L(vj)
(1)

In Equation 1, vj is the sum ranges over all pages that has a link to vi, L(vj)
is the number of outgoing links from vj , N is the number of documents/nodes
in the collection and d is the damping factor. The PageRank is considered to be
a random walk model, because the weight of a page vi is ”the probability that
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a random walker (which continues to follow arbitrary links to move from page
to page) will be at vi at any given time. The damping factor corresponds to the
probability of the random walk to jump to an arbitrary page, rather than to
follow a link, on the Web. It is required to reduce the effects on the PageRank
computation of loops and dangling links in the Web.” [10]. The true value that
Google uses for damping factor is unknown, but it has become common to use
d = 0.85 in the literature. A lower value of d implies that the graph’s structure
is less respected, therefore making the ”walker” more random and less strict.

Another well known method is the Katz algorithm [6]. It is a generalization
of a back-link counting method where the weight of each node is ”determined
by the number of directed paths that ends in the page, where the influence of
longer paths is attenuated by a decay factor” and ”the length of a path is defined
to be the number of edges it contains” [10]. It is defined by Equation 2 ”where
N(vi, k) is the number of paths of length k that starts at any page and ends at
vi and α is the decay factor. Solutions for all the pages are guaranteed to exist
as long as α is smaller than λ > 1, where 1/λ is the maximum in-degree of any
page” [10].

Ivi =

∞∑

k=0

[αkN(vi, k)] (2)

3 Experiments and Results

In order to test the network analysis methods presented above, a database from
the London Riots in 2011 [3] was used. The Guardian Newspaper made public
a list of tweets from 200 influential twitter users, which contains 17795 riot
related tweets and an overall dataset of 1132938 tweets. Using a Topic Detection
algorithm [1], we obtained an additional 25757 unhastagged tweets about the
London Riots. It consists of a Twitter Topic Fuzzy Fingerprint algorithm [13]
that provides a weighted rank of keywords for each topic in order to identify a
smaller subset of tweets within scope. The sum of posting and mentioned users
is 13765 (vertices) and it has 19993 different user mentions (edges), achieving a
network connectivity ratio of edges

vertices = 1.46.
The remainder of this section presents the results of each algorithm’s ranking

for most influential users. An empirical study of the users is made, in order to
ascertain their degree of influence. The graphs and ranking were calculated using
Graph-Tool [9].

Table 1 shows how both network analysis algorithms behave with our graph
representation, while highlighting the changes in rank between them, as shown
by the arrows in the last column. Figure 1 provides a visual tool to the graph, as
provided by PageRank. There is a relation between the number of mentions and
the ranking in both algorithms, since these users are some of the most mentioned
users in our dataset.

When comparing PageRank with Katz, several differences arise, but the top
two users are agreed upon: i) @guardian, Twitter account of the world famous
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Fig. 1. User influence Page Rank Graph - larger circles indicate larger user influence.

Table 1. Most influential users according to Page Rank, and comparison with Katz.

User Mentions PageRank Katz

# rank score rank score rank

@guardian 160 2 0.0002854 1 0.022157 2
@skynewsbreak 178 1 0.0002512 2 0.023479 1
@gmpolice 122 4 0.0002128 3 0.019009 4
@riotcleanup 107 6 0.0001767 4 0.017992 6 ↘
@prodnose 67 14 0.0001761 5 0.014022 15 ↘↘↘
@metpoliceuk 116 5 0.0001494 6 0.018709 5
@marcreeves 69 11 0.0001476 7 0.014195 12 ↘↘
@piersmorgan 78 8 0.0001465 8 0.014959 9
@scdsoundsystem 69 12 0.0001442 9 0.014190 13 ↘↘
@subedited 70 10 0.0001337 10 0.014278 11
@youtube 48 20 0.0001257 11 0.012424 20 ↘↘↘
@bbcnews 94 7 0.0001256 12 0.016426 8 ↗↗
@mattkmoore 62 15 0.0001237 13 0.013614 16 ↘
...
@paullewis 129 3 0.0000954 20 0.019602 3 ↗↗↗↗
...
@juliangbell 61 16 0.0000275 188 0.0166597 7 ↗↗↗↗↗↗↗
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newspaper “The Guardian”; ii) @skynewsbreak, Twitter account of the news
team at Sky News TV channel. This outcome agrees with [7] previous state-
ment, that, “news outlets, regardless of follower count, influence large amounts
of followers to republish their content to other users”. Other users seem to fit the
profile, namely @gmpoliceq and @bbcnews. Most of the other users are either po-
litical figures, political commentators or jornalists (@marcreeves, @piersmorgan,
and @mattkmoore).

However, Katz’s third and seventh top ranked users, are not in PageRank’s
top users. These are two very different cases: i) @paullewis, ranked 3rd by Katz
shows up at 20th according to PageRank; ii) @juliangbell, ranked 7th by Katz
shows up at 188th according to PageRank. The reason behind @paullewis high
placement in the Katz rank is the number of mentions. As said previously, Katz
is a generalization of a back-link counting method, which means the more back-
links/mentions a user has, the higher it will be on the ranking. This user has 129
mentions, but PageRank penalizes it, because it is mentioned by least important
users, which means a less sum weight is being transfered to it in the iterative pro-
cess. This logic also applies to user @bbcnews. Additionally, @paullewis is also an
active mentioning user, having mentioned other users a total of 14 tweets, while
@skynewsbreak and @guardian have mentioned none. As a consequence, Paul
Lewis transfers its influence across the network while the others simply harvest it.
There are several users that drop in ranking from PageRank to Katz for the very
same reason. Users such as @prodnose, @marcreeves and @youtube do not have
enough mentions for Katz to rank them higher. User @juliangbell, despite men-
tioned often (61 times), is down on the PageRank because of indirect gloating,
i.e., he retweets tweets that are mentioning himself: “@LabourLocalGov #Ealing
Riot Mtg: @juliangbell speech http://t.co/3BNW0q6” was posted by @juliangbell
himself. The user is posting somebody else’s re-tweet of one of his tweets. As
a consequence a link/edge was created from @juliangbell to @LabourLocalGov,
but also from @juliangbell to himself, since his username is mentioned in his
own tweet. Julian Bell is a political figure, making it acceptable that he would
have a role in discussing the London Riots, but the self congratulatory behavior
of re-tweeting other people’s mentions of himself, is contradictory with the idea
of disseminating the topic across the network. While Katz is not able to detect
this effect, PageRank automatically corrects it. Contrary to what is mentioned
in previous works, it is our comprehension that Katz is not adequate to detect
a user’s importance in social media such as Twitter.

4 Conclusions and Future Work

With this study, we have shown that in the context of user influence in Twitter,
PageRank and Katz are not equal in performance, thus disproving previous
claims. PageRank has proved a more robust solution to identify influential users
in discussing and spreading a given relevant topic, specially when considering
how it deals with indirect gloating, an item Katz fails to penalize.
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Abstract. A new approach for inference based on treating sampled
functions is presented. Sampled functions can be transformed into only a
few points by wavelet analysis, thus the complete function is represented
by these several discrete points. The finiteness of the teaching samples
and the resulting sparse rule bases can be handled by fuzzy rule interpo-
lation methods, like, e.g., KH interpolation. Using SHDSL transmission
performance prediction as an example, the simplification of inference
problems based on large, sampled vectors by wavelet transformation and
fuzzy rule interpolation applied on these vectors are introduced in this
paper.

Keywords: Fuzzy inference, performance prediction, fuzzy rule inter-
polation, wavelet analysis, telecommunications access networks

1 Introduction

Due to the great number of input values, making inference on phenomena which
can be described by large-sized vectors are difficult and expensive. In order to
construct efficient inference systems, simplification of the input space is needed.
This simplification makes the process of the inference easier, however, it unavoid-
ably rises the system’s level of uncertainty and inaccuracy. During our previous
research on performance prediction of physical links of telecommunications ac-
cess networks, we had to encounter such problems in two ways. Horizontally,
making decisions by the observation of only a part of the physical reality re-
sulted in sparse fuzzy rule bases. Vertically, drastically lowering the number of
the measured frequency dependent input values caused an inaccuracy in the final
results.

In Section 2 the primary technical problem underlying the research on per-
formance prediction is briefly reviewed. In Section 3 wavelet transformation and
fuzzy rule interpolation as the algorithmic techniques applied in a combined
way for handling the problems of simplification are outlined, and in Section 4
we present the test results of the new approach based on these techniques.
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2 SHDSL Performance Prediction of physical links in
telecommunications access networks

In our previous work [1, 2] we have laid the foundations of a Mamdani-type
fuzzy inference method for pre-qualification of telecommunication access network
links based on measured insertion loss and noise values of the given lines. We
applied fuzzy rule bases of two types, the one was generated from the measured
data’s statistical properties using triangular sets, the other was generated by an
evolutionary algorithm using trapezoidal sets [3]. Examples of the resulting rules
can be seen in Fig. 1.
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Fig. 1. Examples of rule antecedents from our previous predicting methods [2].

The above two rule bases were tested by the measurements of more than 60
wire pairs in operating access networks and there were no relevant differences
between their respective results. In most of the cases, where all measured values
belonged to insertion loss areas covered by antecedent sets, the predictions were
successful. Only 13 lines out of 65 could be evaluated, and the predictions were
correct in case of 12 lines form these 13.

3 Methods for handling the vertical and horizontal
sparseness

The reason for the insufficient performance of the pre-qualification method is
the two-dimensional sparseness of the inference system.

Vertical sparseness of the rule bases was derived from the partial usage of
the possible input data. It was needed in order to decrease the dimensionality
of the applied fuzzy inference system, however, a lot amount of information of
the measured insertion loss functions was wasted. Finding a method which keeps
the simplicity of the fuzzy system and the information of the used insertion loss
functions was needed. As wavelet transformation is efficient in reducing the size
of any continuous or discrete functions down to a required level, it seemed to be
successfully applicable in the problem.

Horizontal sparseness of the fuzzy system, namely the sparseness of the rule
bases, can be handled by the techniques of fuzzy rule interpolation. Stabilized
KH interpolation fits continuous and mathematically stable functions to all α-
cuts of the membership functions in the rules, which can tackle the observations
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Fig. 2. Success rate of the rule bases.

in the gaps and out of the domains of the rules too (in this way performing also
extrapolation).

Basics of wavelet transformation and stabilized KH interpolation are briefly
overviewed in the followings.

3.1 On wavelet analysis

In data processing in general wavelet theory [5] has proved to be a very useful
tool. The largest part of the methods use wavelets is the image compression [6]
and data analysis, but it can also be used for solving differential equations [7].

Wavelet transform and of a function provides data about the function’s fine-
scale and rough-scale behavior. Wavelet analysis can be carried out by a series
of filter pairs. There is a high-pass and a low-pass filter in all of the pairs, the
high-pass ones (after a downsampling) giving the wavelet (detail) components
and the low-pass ones being transformed further, as it can be seen in Fig. 3.

Fig. 3. One filter pair of the discrete wavelet transform. After the high pass and low
pass convolutional filters and the downsamplings the transformed vectors c′i and d′i
arise, their size is about half of the size of the original ci.

In data analysis – also in our case – the starting point is a sampled function
and the end result is the lowest resolution level low pass vector and the high pass
vectors. Our starting vector is a series of insertion loss values measured at con-
secutive frequency points, and the resulting vectors give information about the
large-scale behavior of the insertion loss vs. frequency function. In the following
considerations Haar’s [8] and Daubechies’s [5] wavelet and scaling function sets
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are used with 2 and 4 nonzero filter coefficients, respectively. Transformations of
the starting sampled insertion loss functions were carried out until only 5 vector
elements remained.

3.2 Stabilized KH rule interpolation

In case of sparse rule bases, KH interpolation [9, 10] is a mathematically stable
and widely applicable fuzzy rule interpolation method. Its improved version is
the stabilized KH interpolation. In our work we used this improved technique
in order to eliminate the problems originating from the sparseness of the rule
bases.

The method is based on the distances between the examination vector and
the antecedent sets of the rule base. The closures of the α-cuts of the interpolated
resolution are given in [11].

Fig. 4. Insertion loss values and the corresponding wavelet transforms. Different per-
formance classes are indicated by different colors.

4 A new prediction method based on the combination
of wavelet transformation and stabilized KH rule
interpolation

In order to avoid the problems reviewed in Section 1, the techniques of Section 3.1
and 3.2 were used.

First, the wavelet transformed version of the insertion loss values used in rule
base construction were calculated. Daubechies-2 (Haar) [8] and Daubechies-4
wavelets were used and the transformations were performed down to 5 points
resolution. Fig. 4 shows the original and the Haar wavelet transformed insertion
loss values as an example. As a matter of course, wavelet transformation results
in discrete values, however, to make the corresponding points visible, they are
graphically linked in Fig. 4.
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The rule base using Daubechies wavelets did not give better results than the
ones without any wavelet transformation, moreover, several additional errors
occured. On the contrary, in case of Haar wavelets, accurate results arose for
each of the 13 lines that produced valid results and one further line could be
assessed, too, as it can be seen in the left hand side of Fig. 5.

In order to evaluate those lines that were previously not to be assessed, the
new, Haar wavelets-type rule base was applied together with the stabilized KH
rule interpolation. The 65 test lines were re-processed, thus the predictions be-
came feasible in case of all lines. The predictions for the 13 wire pairs which were
correctly evaluated previously remained valid, moreover, results of the predic-
tions of 33 from the other 52 were correct, and 19 acceptable (in this contribution,
results with a deviation of -1 from the correct values are considered as acceptable
ones, all the others as incorrect) and there were no incorrect results.

21,54%

78,46%

 correct predictions
 invalid predictions

70,77%

29,23%

 correct predictions
 acceptable predictions

Fig. 5. Efficiency of the Haar wavelets based rule base alone (left) and supplemented
with the stabilized KH rule interpolation (right).

The simplified “algorithm” of the construction of the predicting system is
summarized as follows.

– Collection of insertion loss and bit rate data of wire pairs.

– Dividing the whole bit rate domain into groups (the more the number of
the measured lines, the finer is the possible resolution) and clustering the
measured values into these groups.

– Generation of several discrete values (6 in this case, however, other reso-
lutions are examined by our ongoing investigations) from measured inser-
tion loss functions by wavelet transformation (Haar wavelets are now recom-
mended, though investigating other types of wavelets with other resolution
levels are being in progress).

– Construction of fuzzy rule bases by clustered and wavelet transformed values.

– Wavelet transformation of the insertion loss function of the wire pair to be
predicted.

– Prediction making by stabilized KH interpolation (can be made even if the
input values can be found within the areas covered by antecedent fuzzy sets).
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5 Conclusions

A novel performance prediction method based on interpolated fuzzy inference
for telecommunications transmission lines and wavelet transformation of the val-
ues of the physical parameters influencing the performance was presented. The
combination of the fuzzy rule interpolation and wavelet transformation was pro-
posed in this paper in the first time. Wavelet transform was used for generating
a coarse-grained view of the measured data, whereas the interpolation is applied
for treating the sparseness of the rule bases. The method performed very well for
the model system of the SHDSL connections, 52 predictions from 65 test cases
were correct, and the other 19 were acceptable.
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Abstract. The authors have investigated the sustainability of Integrated Waste 
Management Systems (IWMS). These systems were modeled by Fuzzy Cogni-
tive Maps (FCM), which are known as adequate fuzzy-neural network type mod-
els for multi-component systems with a stable state. The FCM model was de-
signed of thirty-three factors to describe the real world processes of IWMS in as 
much detailed and as much accurately as possible. Although, this detailed model 
meets the requirements of accuracy, the presentation and explanation of such a 
complex model is difficult due to its size. 

While there is a general consensus in the literature about a very much simpli-
fied model of IWMSs, detailed investigation lead to the assumption that a much 
more complex model with considerably more factors (components) would more 
adequately simulate the rather complex real life behavior of the IWMS. 

As the starting point we used the thirty-three component model based on the 
consensus of a workshop of experts coming from all areas of the IWMS (opera-
tion, regulation, management, etc.) and the set goal was to find the most accurate 
real model that could be obtained by analyzing and properly reducing this – very 
likely too much detailed, or atomized – model.  

In this paper, a new state reduction approach is presented. The practical as-
pects of the results gained by these methods are evaluated. 

Keywords: fuzzy cognitive maps, integrated waste management system, state 
reduction methods. 

1 Introduction 

During the previous investigations [1] the method of FCM was applied to model re-
gional waste management systems which are determined by six factors. As a validation 
of the simulation results [2] data were collected based on the relevant literature to set 
up a time series. This time series served as an input to the Bacterial Evolutionary Al-
gorithm (BEA) which generated an optimal connection matrix producing the possibly 

L. Kóczy, J. Medina (Eds): ESCIM 2015. 978-84-608-2823-5 217



most similar time series to the original one obtained from the literature. Despite the 
expectations, the six-factor FCM model proved to be rather inaccurate in practice [3], 
and this is why a refined, more detailed model, containing thirty-three factors was de-
veloped [6] with the support of a group of experts.  
After the thorough examination of both the basic (6 factors) and the detailed (33 com-
ponents) models it became apparent that the two models were very different, in their 
respective complexities and concepts. For this reason, we assumed that an intermediate 
model containing less than thirty-three but more than six factors would be presumably 
able to describe the mechanism and action of a real IWMS with sufficient accuracy. 

Table 1 introduces the main factors of the basic model and the thirty-three sub-fac-
tors of the detailed model. 

Table 1. The identified sub-factors of the main factors and the concept IDs (CID) of them 

Main 
factor Sub-factor CID Main fac-

tor Sub-factor CID 

Te
ch

no
lo

gy
 (C

1)
 

Engineering knowledge C1.1 

So
ci

et
y 

(C
4)

 

Public opinion C4.1 

Technological system and its coherence C1.2 Public health C4.2 

Local geographical and infrastructural condi-
tions 

C1.3 Political and power factors C4.3 

Technical requirements in the EU and national 
policy 

C1.4 Education C4.4 

Technical level of equipment C1.5 Culture C4.5 

En
vi

ro
nm

en
t (

C2
) 

Impact on environmental elements C2.1 Social environment C4.6 

Waste recovery C2.2 Employment C4.7 

Geographical factor C2.3 

La
w

 (C
5)

 

Monitoring and sanctioning C5.1 

Resource use C2.4 Internal and external legal coherence (do-
mestic law) 

C5.2 

Wildlife (social acceptance) C2.5 General waste management regulation in 
the EU 

C5.3 

Environmental feedback C2.6 Policy strategy and method of implementa-
tion 

C5.4 

Ec
on

om
y 

(C
3)

 

Composition and income level of the population C3.1 

In
st

itu
tio

n 
(C

6)
 Publicity, transparency (data management) C6.1 

Changes in public service fees C3.2 Elimination of duplicate authority C6.2 

Depreciation and resource development C3.3 Fast and flexible administration C6.3 

Economic interest of operators C3.4 Cooperation among institutions C6.4 

Financing C3.5 Improvement of professional standards C6.5 

Structure of industry C3.6  

 
On the basis of the detailed model, we might be able to support the strategic decision 

making process of the stakeholder in order to ensure the long-term sustainability of 
IWMS. 

2 The investigated state reduction method 

The idea of state reduction is similar to clustering but it can also be considered as a 
special, strongly generalized version of the state reduction technique of sequential cir-
cuits or finite state machines (see e.g. [10]). The methods construct clusters of factors 
and these clusters can be used later as factors of the reduced model. The members of 
clusters are selected based on their ‘similarity’. Two factors are considered similar, if 

218



their ‘distance’ is low. The distance of them have to be measured by an appropriate 
metric, and the applied metric differentiate the methods from each other. Different met-
rics and different distance values can also result in different clusters and reduced mod-
els. Several different metrics have been proposed e.g. in [7], but the basic idea of them 
is always the same and all versions use only the connection matrix and a threshold value 
of the maximum allowed distance. In this paper only one of the best solutions will be 
presented. Two factors ܥ and ܥ are considered similar, if the connections originating 
from them and leading to a third factor ܥ, and also in the opposite direction have al-
most the same weights for all ܥ, where 1 ≤ ݅ < ݆ ≤ ݊, ݊ is the number of factors, and 
݅ ≠ ݇, ݆ ≠ ݇, 1 ≤ ݇ ≤ ݊. At first, all clusters contain only one of the factors, but as soon 
as a similar factor is found, they will be merged. During the next steps, the similarity 
of all current cluster members must be measured to the next candidate factor. 

The main properties of similarity are the following: 1) all factor is similar to itself 
(reflexivity), 2) if factor ܥ is similar to ܥ, then ܥ is similar to ܥ as well (symmetry). 
3) But if ܥ is similar to ܥ and ܥ is similar to ܥ, then ܥ is not always similar to ܥ 
(non-transitive). It means that the state reduction method is a fuzzy tolerance relation 
[5, 8]. 

After the presentation of the basic idea, the precise description of the methods are 
given. First, the clusters are disjoint sets of factors, and each one of them contains only 
one factor. ܭ = ݅ for every {ܥ} = 1…݊ where ܭ is the ݅th cluster, ܥ is the ݅th factor 
(factors are often called ‘concepts’ in the FCM theory) and ݊ is the number of factors 
in the model (thirty-three in the IWMS model). In the next steps all clusters will be 
appended by other factors, if possible. The ‘distance’ between the next cluster candidate 
and all current cluster members are measured by the chosen metric.  

The presented metric calculates the normalized, squared Euclidean distance of the 
connections starting from factors ܥ and ܥ to ܥ, where ݅ ≠ ݆ ≠ ݇, ݅, ݆, ݇	 = 1…݊. If 
this difference is below the threshold value (ε), the current factor is added to the cluster. 
The determined distance is normalized to [0, 1]. The applied metric is described more 
precisely by the following C-style pseudo-code (see Fig. 1 and Fig. 2). 

function isNear(i, j, eps, c) 
 sum = 0;  // i, j = factor indexes, eps = ε 
 for(k=0; k<n; k++) // n = number of factors 
  if(k!=i and k!=j and !elementOf(k, c)) 
   dout = w(i, k)-w(j, k) // w(i, k) = ݓ 
   sum = sum + dout * dout 
   din = w(k, i)-w(k, j) 
   sum = sum + din * din 
 if(sum / ((n-2)*8) < eps) 
  return true 
 else 
  return false 

Fig. 1. Calculation of the distance of two concepts  
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function buildCluster(initialFactor, eps) 
 c = {initialFactor} 
 for(i=0; i<n; i++) 
  if(i != initialFactor) 
   member = true 
   while(member and hasNextElement(c)) 
    j = nextElement(c) 
    member = isNear(j, i, eps, c) 
    if(member) 
     c = c + {i} 
 return c 
 
function buildAllClusters(eps) 
 clusters = {} 
 for(i=0; i<n; i++) 
  k = buildCluster(i, eps) 
  if(!isElementOf(k, clusters)) 
   clusters = clusters + {k} 
 return clusters 

Fig. 2. Pseudo-code of the state reduction algorithm, Part 1 

The state reduction is started by the buildAllClusters function (see Fig. 2). It 
requests the creation of each clusters by consecutive calling of the buildCluster 
function. The latter function sometimes produces the same clusters in different order, 
but buildAllClusters keeps only one of them. The distance of two factors are 
measured by isNearA or some of the other functions implementing different metrics. 

When all the clusters are defined, the weights of the interconnections are defined by 
function getWeight. This function accepts two cluster arguments and provides the 
weight between these clusters. The return value is the average weight of connections 
among the factors of the specified clusters. The weight of self-loops are always zero 
according to the original FCM definition (see Fig. 3). 

function getWeight(a, b) 
 count = 0 
 sum = 0 
 while(hasNextElement(a)) 
  i = nextElement(a) 
  while(hasNextElement(b)) 
   j = nextElement(b) 
   if(i != j) 
    count = count + 1 
    sum = sum + w(i, j) 
 if(count == 0) 
  return 0 
 else 
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  return sum/count 

Fig. 3. Pseudo-code of the state reduction algorithm, Part 2 

The value of ε must be in the [0, 1] interval and must be chosen appropriately in every 
single case, because it plays an important role in the reduction process. Too low values 
do not lead to models containing significantly fewer factors (clusters), thus they are not 
useful. But if the value of ε is too high, the model will be oversimplified and will not 
have the required accuracy. For example in an extreme case, when ε is 1, the whole 
model collapses and only one big sole cluster remains. The knowledge and experience 
of experts are needed to specify a meaningful ε value. In order to show the connection 
between ε and the number of factors (clusters) some interesting value pairs are collected 
in Table 2. 

Table 2. The number of factors in the reduced connection matrix 

 No. of factors ߝ

0.015 29 

0.023 24 

0.024 23 

0.037 22 

0.070 21 

0.080 17 

 

It must be emphasized here that all model reduction activities necessarily cause 
information loss, and the accuracy of simplified models are always lower. In the 
suggested method, there are three root causes of information loss: 

1. The connections among concepts inside the same cluster are neglected. The representation 
of these connections would result in self loops which is not allowed according to Kosko’s 
original idea. 

2. Every causal relation needs one time step before their effect can be observed. Long pathes 
of  concepts and interconnections may cause long delays. If more or less elements of these 
pathes become inside the same cluster, these delays partially disappear. 

3. Since the model reduction method is based only on the connection matrix, the getWeight 
function cannot take into account the effect of possibly different (source) concept values on 
the connected (destination) concepts, because all such connections are represented by a 
single connection in the reduced model. 

Despite all these possible problems, the proposed state reduction method performed 
well in several practical problems [9]. Furthermore, an exhaustive investigation is under 
fulfillment in order to analyze the behavior of the proposed method on statistical basis. 

3 Results 

In the next, the authors give an overview about and shortly analyze the driving forces 
and impact of IWMS upon the results of the state reduction method (Table 3, Table 4).  
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Table 3. An example of clusters as a result of state reduction (ε = 0.06) 

Cluster ID Reduced concepts 

Q1 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C4.6 + C6.4  

Q2 C1.1 + C1.3 + C2.1 + C2.3 + C2.5 + C4.2 + C4.3 + C4.4 + C4.5 + C4.7  

Q3 C1.2 + C1.5 + C2.2 + C2.3 + C3.3 + C3.5 + C3.6 + C5.1  

Q4 C2.4 + C2.5 + C2.6 + C4.4 + C4.5 + C4.6 + C5.1  

Q5 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C2.5 + C3.3 + C3.4 + C3.5 + C4.3 + C4.5 + C6.4  

Q6 C1.1 + C2.1 + C2.4 + C2.5 + C2.6 + C4.2 + C4.4 + C4.5 + C4.6 + C5.1  

Q7 C1.1 + C1.2 + C1.3 + C1.4 + C2.5 + C3.1 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C4.6 + C6.1 + C6.2 + C6.3 + C6.4  

Q8 C1.1 + C1.2 + C1.4 + C1.5 + C2.5 + C3.2 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C4.6 + C6.1 + C6.2 + C6.3 + C6.4  

Q9 C1.1 + C1.2 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C5.3 + C6.4  

Q10 C1.1 + C1.2 + C1.4 + C1.5 + C2.5 + C4.1 + C4.2 + C4.4 + C4.5 + C4.6 + C4.7 + C5.2 + C5.3 + C6.4  

Q11 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.5 + C4.2 + C4.4 + C4.5 + C4.6 + C4.7 + C5.3 + C6.4  

Q12 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C2.5 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C4.6 + C6.4  

Q13 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C4.7 + C6.4  

Q14 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.5 + C4.3 + C4.4 + C4.5 + C4.6 + C5.1  

Q15 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.5 + C3.3 + C3.5 + C4.4 + C4.5 + C4.6 + C5.2 + C5.3 + C6.4  

Q16 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C4.5 + C5.3 + C6.4  

Q17 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C4.5 + C5.4 + C6.4  

Q18 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C2.5 + C3.3 + C3.4 + C3.5 + C4.3 + C4.5 + C6.1 + C6.4  

Q19 C1.1 + C1.2 + C1.3 + C1.4 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C6.1 + C6.2 + C6.3 + C6.4 + C6.5  

Q20 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C6.3 + C6.4  

Q21 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C6.4  

Q22 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C3.3 + C3.4 + C3.5 + C4.3 + C4.4 + C4.5 + C6.3 + C6.4 + C6.5  

 

Table 4. An example of clusters as a result of state reduction (ε = 0.08) 

Cluster ID Reduced concepts 

Q1 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.2 + C2.3 + C2.4 + C2.5 + C2.6 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.1 + 
C4.2 + C4.3 + C4.4 + C4.5 + C4.6 + C4.7 + C5.2 + C5.3 

Q2 C1.1 + C1.2 + C1.3 + C1.5 + C2.1 + C2.2 + C2.3 + C2.4 + C2.5 + C2.6 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.1 + C4.2 + 
C4.3 + C4.4 + C4.5 + C4.6 + C4.7 + C5.2 + C5.3 

Q3 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.5 + C4.7 + C5.1 + C5.3 + C5.4 

Q4 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.2 + C2.3 + C2.4 + C2.5 + C2.6 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.2 + C4.3 + 
C4.4 + C4.5 + C4.6 + C5.2 + C5.3 + C5.4 + C6.2 + C6.5 

Q5 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.5 + C4.1 + C4.3 + C4.4 + C4.5 + C4.6 + 
C5.2 + C5.4 
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Q6 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C4.1 + C4.2 + C4.3 + 
C4.4 + C4.5 + C4.6 + C4.7 + C5.2 + C5.3 + C6.4 

Q7 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.2 + C2.3 + C2.4 + C2.5 + C2.6 + C3.4 + C3.5 + C3.6 + C4.1 + C4.2 + C4.3 + 
C4.4 + C4.5 + C4.6 + C5.2 + C5.3 + C6.4 + C6.5 

Q8 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.5 + C4.6 + C5.3 + C5.4 

Q9 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.2 + C2.3 + C2.4 + C2.5 + C2.6 + C3.3 + C3.4 + C3.5 + C3.6 + C4.1 + C4.2 + 
C4.3 + C4.4 + C4.5 + C4.6 + C5.1 + C5.2 + C5.3 

Q10 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.7 + C5.1 + C5.2 + C5.3 + C5.4 + C6.5 

Q11 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.2 + C2.3 + C2.4 + C2.5 + C2.6 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.5 + C4.6 + C4.7 + C5.3 + C6.5 

Q12 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.7 + C5.1 + C5.3 + C5.4 

Q13 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.7 + C5.1 + C5.4 + C6.1 

Q14 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.7 + C5.3 + C5.4 + C6.1 + C6.2 + C6.4 

Q15 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.3 + C2.5 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + C4.5 + C4.6 + 
C4.7 + C5.1 + C6.2 + C6.3 

Q16 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.3 + C2.5 + C2.6 + C3.1 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.5 + C5.1 + C5.3 + C5.4 + C6.4 

Q17 C1.1 + C1.2 + C1.3 + C1.4 + C1.5 + C2.1 + C2.2 + C2.3 + C2.5 + C2.6 + C3.2 + C3.3 + C3.4 + C3.5 + C3.6 + C4.3 + C4.4 + 
C4.5 + C5.1 + C6.5 

 
As it can be seen from the above tables, there are several overlaps among the clusters. 

According to this, some of the factors are presented many times in the new models. The 
role of factors are described in Table 5 and Table 6. 

Table 5. Appearance of factors in the clusters – the possible framework of a new IWMS 
(ε = 0.06) 

CID Role of 
factors Nomination of factor CID Role of 

factors Nomination of factor 

C1.1 21 Engineering knowledge C1.4 19 Technical requirements in the EU and national 
policy 

C2.5 21 Wildlife (social acceptance) C3.3 19 Culture 

C4.3 21 Political and power factors C3.5 19 Financing 

C1.5 20 Technical level of equipment C1.2 18 Technological system and its coherence 

C1.3 19 Local geographical and infrastructural conditions C2.3 18 Geographical factor 

 

Table 6. Appearance of factors in the clusters – the possible framework of a new IWMS 
(ε = 0.08) 

CID Role of 
factors Nomination of factor CID Role of 

factors Nomination of factor 

C1.1 17 Engineering knowledge C2.5 17 Wildlife (social acceptance) 

C1.2 17 Technological system and its coherence C3.5 17 Financing 

C1.3 17 Local geographical and infrastructural condi-
tions C4.3 17 Political and power factors 
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C1.5 17 Technical level of equipment C4.4 17 Education 

C2.3 17 Geographical factor C1.4 16 Technical requirements in the EU and national 
policy 

 
Integrated modeling requires not only the consideration of the technical and economic 
system elements, but also social, environmental, legal and institutional factors, further-
more their sub-factors. In these cases, to deal with the situations where data at hand are 
often insufficient for an entire quantitative analysis and the uncertainty is high, a series 
of non-quantifiable elements become important. 

IWMSs are organized along spatial and temporal scales. While modeling the system, 
it leads to the appearance of the connections and interaction between its factors and 
sub-factors. The factors of these systems are connected via material, energy, money and 
information flows and form a complex phenomenon through legal regulation. 
During studying the results of the state reduction methods, it could be recognized that 
the most commonly occurring factor in the new models (Table 5, Table 6) is the ‘Engi-
neering knowledge’. Based on international experience it might be still surprising that 
the most important element in the system is ‘Engineering knowledge’. The factor has a 
determining role in the design and operation of the systems according to technical-eco-
nomic-environmental considerations. 
This combination of factors tells about the relationship of the sub-factors as parts of the 
systems and highlights the question ‘What is important in this system?’. 

4 Conclusions 

A new state reduction approach was introduced to make the otherwise too complex 
connection matrix of IWMS model easier to handle and understand. The factors of two 
simplified connection matrices was presented and evaluated. The presented reduction 
method will be further investigated in regard to its known shortcomings. 

The state reduction approach proved to be good to combine different type of factors 
and create clusters. It thereby provides a comprehensive and more thoroughly under-
standing of an IWMS as a technical-economic-social-environmental system. 

The conclusions based on the results of state reduction should be viewed together 
with existing scientific knowledge. In the next period, it is the authors’ intention to 
study further the assumptions, but also be open to insights gained from a systemic ap-
proach to deliver a method for decision making on sustainable regional waste manage-
ment. 

5 Future research  

The authors’ purpose is to apply a modified version of the FCM. In the suggested 
method several connections that existed in the original model were neglected as their 
source and sink factors were represented by a single cluster of factors. The representa-
tion of these internal connections may lead to self-loops, which means non-zero ele-
ments in the main diagonal of the connection matrix. Usually this property of the matrix 
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is not accepted [4], but real life systems query the justification of this theory. The usage 
of clusters also removes some delays of the original models, which can cause different 
simulation results or limit cycle behavior. The authors intention is to analyze the effect 
caused by self-loops and missing delays, then provide advanced model reduction tech-
niques. 

Acknowledgement. The authors would like to thank to TÁMOP-4.2.2.A-11/1/KONV-
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Petra Hodáková and Nicolás Madrid

University of Ostrava, Centre of Excellence IT4Innovations,
Institute for Research and Applications of Fuzzy Modeling,

30. dubna 22, 701 03 Ostrava 1, Czech Republic
{nicolas.madrid,petra.hodakova}@osu.cz

Abstract. In this paper, we show that F-transform can be used to re-
duce relational databases. Subsequently, we show that the respective
concept lattice is reduced significantly as well. Moreover, we present a
clarifying example of the procedure.
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edge Reduction.

1 Introduction

Fuzzy Formal Concept Analysis deals with the processing of imprecise knowl-
edge in information systems [2, 3]. In this theory, the information of a relational
databases is represented in terms of a complete lattice where its elements are
called concepts. However, despite the information represented by the concept
lattice is valuable, the complexity and the size (which increases exponentially
with respect to the size of the relational database) makes the use of this theory
impractical in many applied tasks. For this reason, recent approaches have dealt
with Knowledge Reduction in relational databases to simplify the formal concept
analysis of them [1].

On the other hand, F-transforms [4] is a theoretical tool that has shown
its effectiveness on representing the information of signals (like temporal series,
images, etc.) to a vector of few components. This paper applies F-transforms
(based on residauted lattice) to Knowledge Reduction. Specifically, we begin by
showing that objects (or attributes) in a relational database can be grouped in
a new set of objects (or attributes). Then, we transfer the information of the
original database to another where objects are given by the grouping previously
mentioned. The transfer of information is given by F-transforms and therefore,
there are two possible new relational databases.

This paper has the following structure. In Section 2 we recall briefly the the-
ories of fuzzy property-oriented concept lattices and F-transforms. Then, in Sec-
tion 3 we describe the reduction of relational tables by means of F-Transforms.
Moreover, we illustrate the consequences of the reduction in concept lattices with
an example. Finally, in Section 4 we present conclusions and future work.
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2 Preliminaries

2.1 F-transforms on residuated lattices

In this section, we briefly recall the basic definitions and the main principles of
F-transforms based on operations of a residuated lattice [4]. Let (L,≤,&,→)
be a residuated lattice. A fuzzy partition of a finite set U is a set of L-fuzzy
sets on U A1, . . . ,An fulfilling the covering property namely, for all x ∈ U there
exists k ∈ {1, . . . , n} such that Ak(x) > 0. The membership functions Ak(x),
k = 1, . . . , n are called the basic functions.

Definition 1. Let f : U → L be a function and A1, . . . ,An, with n ≤ |U|, be
basic functions which form a fuzzy partition of U . We say that the n-tuple of real
numbers F↑n[f ] = [F ↑1 , . . . , F

↑
n ] is the (direct) F ↑-transform of f w.r.t. A1, . . . ,An

if

F ↑k =
∨

x∈U
(Ak(x) & f(x)). (1)

Moreover, we say that the n-tuple of real numbers F↓n[f ] = [F ↓1 , . . . , F
↓
n ] is the

(direct) F ↓-transform of f w.r.t. A1, . . . ,An if

F ↓k =
∧

x∈U
(Ak(x)→ f(x)). (2)

The elements F ↑1 , . . . , F
↑
n and F ↓1 , . . . , F

↓
n are called components of the F ↑-transform

and F ↓-transform, respectively.
The following lemma ([4]) shows that the components of the F ↑-transform

(F ↓-transform) are lower mean values (upper mean values) of an original function
which give least (greatest) element to certain sets.

Lemma 1. Let f : U → L be a function and A1, . . . ,An, with n ≤ |U|, be basic
functions which form a fuzzy partition of U . Then the k-th component of the
F ↑-transform is the least element of the set

Sk = {a ∈ L| Ak(x) ≤ (f(x)→ a) for all x ∈ U}

and the k-th component of the F ↓-transform is the greatest element of the set

Tk = {a ∈ L| Ak(x) ≤ (a→ f(x)) for all x ∈ U}

where k = 1, . . . , n.

2.2 Fuzzy property-oriented concept lattices

In this section we recall briefly a simplification of property-oriented concept
lattices introduced in [2, 3]. So, because of the lack of space, here we restrict to
residuated lattices instead of adjoin triples. The notion of fuzzy property-oriented
context is defined below.

227



On the Use of F-transform on the Reduction of Concept Lattices 3

Definition 2. Let (L,≤,&,→) be a residuated lattice. A context is a tuple
(A,B,R) such that A and B are non-empty sets (usually interpreted as attributes
and objects, respectively), R is an L-fuzzy relation R : A×B → L.

From now on, we fix a context (A,B,R). The mappings ↑Π : LB → LA and
↓N : LA → LB are defined, for g ∈ LB and f ∈ LA as, g↑Π and f↓

N

, where

g↑Π (a) =
∨

b∈B
R(a, b) & g(b)

f↓
N

(b) =
∧

a∈A
R(a, b)→ f(a)

It is not difficult to prove that (↑Π , ↓
N

) forms an isotone Galois connection

(also known as adjunction) and, therefore, ↑Π ↓
N

: LB → LB is a closure operator

and ↓
N ↑Π : LA → LA is an interior operator. A concept is a pair of mappings

〈g, f〉, with g ∈ LB , f ∈ LA, such that g↑Π = f and f↓
N

= g, which will be
called fuzzy property-oriented concept. In that case, g is called the extent and f ,
the intent of the concept. The set of all these concepts will be denoted as FΠN .

Definition 3. The associated fuzzy property-oriented concept lattice to the
context (A,B,R) is defined as the set

FΠN = {〈g, f〉 ∈ LB × LA | g↑Π = f and f↓
N

= g}

in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 iff g1 �2 g2 (or equivalently
f1 �1 f2).

3 Reducing the size of Relational Tables.

Throughout this section we consider a frame (A,B,R) and a residuated lattice
(L,≤,&,→). The idea underlying in the reduct is the creation of two smaller
relational tables R↑ and R↓ that keep as much information from R as possible.
In order to reduce the size of the table is needed to reduce either the number of
attributes or the number of objects. In this paper we focus on objects. In this
way, we define a new set of objects B that can be considered as a set of fuzzy sets
that group objects according to certain attributes in A. For instance, consider a
relational table where objects are people and attributes are physical features of
them. Then, we could group people according to their high and then, to define
the following set of “new” objects {B1 = V erySmall, B2 = QuiteSmall, B3 =
Medium,B4 = QuiteTall, B5 = V eryTall}. To conclude the reduction, we only
need to define the relations R↑ and R↓ between the new set of objects and the
original set of attributes. For such a task we consider direct F-transforms. In
this framework, each basic function from the chosen fuzzy partition determines
a new object and the value assigned to it by the direct F-transform determines
the value of the relation.
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To define the basic functions (and then also the set of new objects) let us
consider firstly, a fuzzy partition of L given by fuzzy sets {Lk : k ∈ {1, . . . , n}}
and secondly, a subset of attributes A ⊆ A. Then the fuzzy partition B =
{Bka : k ∈ {1, . . . , n} and a ∈ A} of B is defined by

Bka(b) = Lk(R(b, a)), b ∈ B. (3)

Note that the fuzzy partition B groups original objects in fuzzy sets according to
their relation with attributes in A. Moreover, note the number of basic functions
(i.e., the number of new objects) is k · |A|. So the size of the new set of objects
depends on the number of attributes considered to define the partition. Once the
fuzzy partition is fixed, we can define the following two L-fuzzy relational tables
R↑ and R↓ between B = {Bk,a : k ∈ {1, . . . , n} and a ∈ A} and A as follows:

R↑ : B ×A→ L

(Bk,a, a) 7→
∨

b∈B
Bka(b) &R(a, b)

R↓ : B ×A→ L

(Bk,a, a) 7→
∧

b∈B
Bka(b)→ R(a, b)

(4)

Note that original objects are used to define the values of the new ones.
Finally, the reduction of the concept lattice given by the original frame (A,B,R)
is the pair of concept lattices associated to the frames (A,B,R↑) and (A,B,R↓).
Below we show how the procedure works in a simple example.

HighPower BigSpace HighConsume Expensive Sport Familiar

b1 1 0.2 1 0.8 1 0

b2 1 1 0.8 1 0.6 1

b3 0.6 0.8 0.4 0.6 0.2 0.6

b4 0.8 0.6 0.6 0.6 0.6 0.6

b5 0.6 0.4 0.2 0.6 0.2 0.2

b6 0 0.2 0 0.2 0 0

b7 0.8 0.2 0.8 0.8 0.8 0

b8 1 1 1 1 0 1

b9 0.6 1 0.4 0.6 0 1

b10 0.6 1 0.6 0.6 0 1

b11 0.6 0.6 0.4 0.4 0 0.6

b12 0.2 0.4 0.4 0.2 0 0.2

b13 0.8 0 0.8 1 0.8 0

Fig. 1. A car relational database.
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Example 1. Let us consider the L-relational table in Figure 1 that relates types
of cars (objects) with features (attributes). For the sake of simplicity, let L be
the unit interval [0, 1] represented by finite set L = {0, 0.2, 0.4, 0.6, 0.8, 1}, and
the adjoint pair considered for the reduction and the construction of the concept
lattice is the one given by the Gödel connectives. Let us consider the partition
{L1,L2} of L given by:

x 0 0.2 0.4 0.6 0.8 1

L1(x) 0 0.2 0.4 0.6 0.8 1

x 0 0.2 0.4 0.6 0.8 1

L2(x) 1 0.8 0.6 0.4 0.2 0

Now, for the sake of simplicity let us consider just the attribute Familiar ∈ A
to make the reduct. Then, from Equation (3), we have that the partition of the set
of objects B with respect to the attribute Familiar and the partition {L1,L2}
of L is given by the following two fuzzy sets

b b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

B1a(b) 0 1 0.6 0.6 0.2 0 0 1 1 1 0.6 0.2 0

b b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

B2a(b) 1 0 0.4 0.4 0.8 1 1 0 0 0 0.4 0.8 1

Note that partitions B1a and B2a above represent the fuzzy sets of cars that
are familiar and non familiar, respectively. Thus, it has sense that the two new
objects in the new tables are denoted by FamCars and NonFamCars. The
new relational tables are given by F-transforms (4) as follows

R↑ HighPower BigSpace HighConsume Expensive Sport

FamCars 1 1 0.8 1 0.6
NonFamCars 1 0.4 1 1 1

R↓ HighPower BigSpace HighConsume Expensive Sport

FamCars 0.6 1 0.4 0.6 0
NonFamCars 0 0 0 0 0

The tables above can be interpreted as follows. Tables R↑ and R↓ represent
the possibility and necessity, respectively, of a familiar car (in some degree) to
have a certain attribute. So R↑(FamCars, a) and R↓(FamCars, a) represent
an upper and a lower bound, respectively, of the value R(b, a) for any familiar
car b ∈ B, i.e., R↑(FamCars, a) ≥ B1a(b) &R(b, a) and R↓(FamCar, a) ≤
B1a(b)→ R(b, a).

It is interesting to mention that from the interpretability above, we can infer
from the tables R↑ and R↓ that a familiar car must have a big space because
R↑(FamCars,BigSpace) = R↓(FamCars,BigSpace) = 1. Moreover, the famil-
iar cars are quite powerful and expensive as well asR↓(FamCars,HighPower) =
R↓(FamCars,Expensive) = 0.6.

The concept lattice of the original relational table of Example 1 has 302
concepts and it is given by the following Hasse diagram
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However, the concept lattices of the tables reduced by our procedure have only
5 and 6 concepts, respectively.

12/7/15 13:21

Página 1 de 2file:///Users/elo/lattice.html

Concept lattice

List of concepts
C0 = {}/{BigSpace/1, Expensive/1, HighConsume/1, HighPower/1, Sport/1}
C1 = {FamiliarCars/0.4, }/{BigSpace/1, Expensive/1, HighConsume/1, HighPower/1, }
C2 = {FamiliarCars/0.6, }/{BigSpace/1, Expensive/1, HighConsume/0.4, HighPower/1, }
C3 = {FamiliarCars/1, }/{BigSpace/1, Expensive/0.6, HighConsume/0.4, HighPower/0.6, }
C4 = {FamiliarCars/1, NonFamiliarCars/1}/{}

Concept Generators
{} -> C4
{BigSpace/0.2, } -> C3
{BigSpace/0.4, } -> C3
{BigSpace/0.6, } -> C3
{BigSpace/0.8, } -> C3
{BigSpace/1, } -> C3
{Expensive/0.2, } -> C3
{Expensive/0.4, } -> C3
{Expensive/0.6, } -> C3
{Expensive/0.8, } -> C2

12/7/15 13:22

Página 1 de 2file:///Users/elo/lattice.html

Concept lattice

List of concepts
C0 = {FamiliarCars/0.6, NonFamiliarCars/0.4}/{BigSpace/1, Expensive/1, HighConsume/1,
HighPower/1, Sport/1}
C1 = {FamiliarCars/0.8, NonFamiliarCars/0.4}/{BigSpace/1, Expensive/1, HighConsume/1,
HighPower/1, Sport/0.6}
C2 = {FamiliarCars/0.6, NonFamiliarCars/1}/{BigSpace/0.4, Expensive/1, HighConsume/1,
HighPower/1, Sport/1}
C3 = {FamiliarCars/1, NonFamiliarCars/0.4}/{BigSpace/1, Expensive/1, HighConsume/0.8,
HighPower/1, Sport/0.6}
C4 = {FamiliarCars/0.8, NonFamiliarCars/1}/{BigSpace/0.4, Expensive/1, HighConsume/1,
HighPower/1, Sport/0.6}
C5 = {FamiliarCars/1, NonFamiliarCars/1}/{BigSpace/0.4, Expensive/1, HighConsume/0.8,
HighPower/1, Sport/0.6}

Concept Generators
{} -> C5
{BigSpace/0.2, } -> C5
{BigSpace/0.4, } -> C5
{BigSpace/0.6, } -> C3
{BigSpace/0.8, } -> C3
{BigSpace/1, } -> C3
{Expensive/0.2, } -> C5
{Expensive/0.4, } -> C5

4 Conclusion and Future Works

In this paper we have presented the reduction of relational tables aimed to keep
as much information from the original table as possible. Our future work is to
apply the reduct based on the ordinary F-transforms and measure, determine
and/or bound the information which is on one hand lost by the reduction and
on the other hand kept by the reduction.
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Abstract. The main contribution of this paper is to overview and discusses 
possible applications of fuzzy relational calculus to solve some issues and 
challenges of recommender systems. The presented ideas are targeting the most 
essential aspects of these problems, the knowledge representation and handling. 

Keywords. fuzzy relations; recommender systems; implicit and explicit feed-
back; cold start problem; hybrid filtering 

1 Introduction 

Recommender systems are none other, than information filtering algorithms, that 
help users in the discovery of items in the multitude of choices. Personalized 
recommendations reduce the time the user spent for looking for relevant items and 
increase the likelihood of meeting the user’s expectations. Recommender systems 
could be considered as cognitive info communication systems [1], which decrease the 
cognitive load and increases the mathability [2] of the users, extends the users’ ability 
to filter out and access relevant content. 

By the assistance of content discovery the user satisfaction may increase, 
consequently recommender systems have also impact from the business point of view. 
Because of this, recommender systems became more and more popular among both 
the businesses and end-users in the last decade. Recommender systems shouldn’t 
consider the maximization of key performance indicators for the businesses only, but 
finding the trade off between accuracy, coverage, diversity and serendipity. 

This paper is organized as follows: after the Introduction in Section 2 some of the 
main difficulties of recommender systems are outlined. In Section 3 there is a short 
overview of fuzzy relational calculus with possible applications in recommender 
systems. Fuzzy methods in recommender systems are briefly summarized in Section 
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4. This is followed by some ideas and aspects of fuzzy relational calculus in 
recommender systems. Summary of the paper and the main phases of future work are 
outlined in Section 6. 

2 Issues and Challenges of Recommender Systems 

There are several influencing factors that make difficult to fulfil all of the 
requirements for an effective recommender system. One of the key challenges is the 
proper interpretation of user activities for user profiling. In practice two types of user 
interaction is distinguished. We consider an interaction as “explicit feedback”, when 
the user expresses his preference over an item intentionally (e.g. he gives a rating 4 
for a movie). Explicit feedbacks have significant information about the preference 
since it can be quantified in the algorithms. The typical examples of explicit 
feedbacks are ratings, likes, dislikes and adding contents to favourites. The other type 
of interactions is the “implicit feedback” that refers to all kind of interactions that 
cannot be interpreted precisely in terms of preference. For example, a profile view 
interaction is considered as implicit feedback because it has no explicit meaning about 
how much the user likes or dislikes it.  The typical examples of implicit feedbacks are 
viewing a profile, buying a product or watching a movie. Based on another approach, 
the difference between implicit and explicit feedback is that implicit feedbacks are 
generated before consuming the items while explicit feedbacks are made after the 
interaction with the item. In practice the collection of explicit data is more difficult, 
because it requires the intention and some efforts from the user to express its 
preference over the items. By contrast of that implicit feedbacks are much easier, 
because it is just a tracking of user browsing on the site. The consequence of these 
properties is that on one hand explicit data is more meaningful but it is less provided, 
on the other hand implicit data is less meaningful but it is provided with a higher level 
of magnitude. 

Main properties of implicit and explicit feedback according to [3] and [4] are 
summarized as follows: It could be easy to collect implicit feedback from user 
interactions, but it is noisy, difficult to interpret and has a low accuracy. Explicit 
feedback has lower availability, possibly as a result of the increased cognitive 
information processing it requires, but has no such a reward, which would directly 
motivate the users to be involved. It is possible to determine both positive and 
negative preferences from explicit feedback, but it is dependent from the context [3] 
and could be noisy [5-7]. Since explicit and implicit feedbacks are representing the 
same consumer preferences, there must be a relation between them; D. Parra et al. 
used logistic regression in order to extract explicit feedback from implicit feedback 
[8]. 

Another practical problem is that the preference of users is changing over time, the 
interpretation of an interaction strongly depends on the context (e.g. the time of the 
day or the device that the user is using). The deeper understanding of the problem 
depends on the knowledge extracted from both the behaviour and cognitive processes 
of the users and the processes from industrial or commercial point of view including 
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the advantages and disadvantages of applied technologies. In order to recommend 
items for the users, their profiles should be known. Usually it is possible through 
collecting and processing implicit and explicit feedback, which could be considered 
as different projections of the same user preferences. 

Another challenge is solving the cold-start problem. A recommendation problem is 
considered as cold-start problem if neither explicit feedbacks nor implicit feedbacks 
are provided for an item or user. There are two kinds of cold-start problems [9-11], 
first is when a recommendation should be generated for a new user (with limited or 
without any previous knowledge of his preferences or patterns) and the other is when 
a new item appears in the system. To overcome these problems, content-based 
filtering (CBF) methods were introduced [9-12]. Metadata is essential to enhance the 
user and item models for better recommendation. At this stage basic data (such as 
gender, age group) are available for the system, but those could be ambiguous and it 
does not conclude that the user will have the typical preferences built from the data 
bank. A similar case is when a new item gets available and only basic information is 
ready such as categories, product descriptions or tags, which could be still 
misclassified.  Content-based filtering techniques are targeting to use meta data to 
create more acceptable recommendation, but if the mate data is not well structured, 
the system will not perform well. The missing metadata might also lead to problems; 
when an item does not have proper description and/or tags some systems consider it 
not as missing data, but connects it with a negative property, which means that the 
missing tags are considered as features that do not apply to the item. 

As the user interacts with the system, implicit or explicit feedbacks are collected 
about his behaviour. Analogously to new items, the users start to consume it and 
generating feedbacks for that. The increasing number of interactions improves the 
accuracy of user or item models. However it is generally true that more feedbacks 
results better models, there is a theoretical saturation point where an additional 
increment of the number of feedbacks doesn’t result significant improvement in 
accuracy. The period between cold-start and saturation point is called “warm-up” 
period. It depends on the algorithm whether the user is in “warm-up” period, the key 
challenge is to reduce the amount of data required by the recommender algorithm. 

The user interactions are not only used for personalization, but the extraction of 
user behavioural patterns, that called collaborative filtering (CF) [13]. Collaborative 
filtering methods recommend items based on what the similar users consumed. An 
advantage of collaborative filtering against the content-based filtering is that it is 
capable to extract behavioural patterns that cannot be explained by metadata. 
Conventional collaborative filtering can be powerful when a clear separation of user 
preferences is observed in consumption patterns. Usually it is not the case because the 
user preferences are usually mixed or fuzzy. The disadvantage of collaborative 
filtering methods is that they are not capable to solve the cold-start problem and 
performs. 

To combine the advantages of collaborative- and content-based filtering, hybrid 
filtering was introduced [14]. Hybrid filtering methods are more complex than single 
collaborative- or content-based filtering methods, but offers better accuracy by 
solving cold-start problem and extracting consumption patterns at a time. Another 
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advantage of hybrid filtering is that misclassified metadata can be easier detected (e.g. 
a movie labelled “action” mainly consumed by “romantic” movie fans), furthermore 
similarity between different tags can be evaluated. However the conventional hybrid 
filtering has many advantages, it is still difficult to handle missing information and 
less meaningful implicit data sets. 

The properties of computational intelligence techniques (like fuzzy methods, meta 
heuristics) enable them to properly handle some of the described problems. There are 
number of works related to the application fuzzy methods in recommender systems 
and the aim of this work is to give a brief overview of these and look for some 
possible new perspectives. 

3 Fuzzy Relations and Basic Operations 

Similarly to crisp and fuzzy sets [15], the fuzzy relations could be interpreted as 
generalized form of crisp relations, where the connection between items of two or 
more (discrete or continuous) sets could be expressed by a membership degree [16–
17]. If we consider relation R between sets X1, X2, …, Xn, then the formal description 
of the fuzzy relations is as follows: 

   n1n1 XXX,,XR   , (1) 

   n1n1 x,,xRx,,xR   . (2) 

Let R be a fuzzy relation over the X1, …, Xn, then  YR   is the projection of the 
relation on the Y multi sets formally: 

     xRmaxyYR
xy

 . (3) 

The cylindrical extension could be considered as some sort of inverse operation of 
the above defined projection operator. It is marked as  YXR  , where R is a fuzzy 
relation and X, Y are multi sets and the values are calculated for each x, where xy  : 

     yRxYXR  . (4) 

The cylindrical closure (5) is similar to cylindrical extension, but it uses the 
intersection of multiple projections. 

      xYXpminxPcyl iiIii 


, (5) 

where Pi is a projection defined over Yi multi set.  IiPi   is a set of projections of 

R fuzzy relation defined over set X. 
There is possibility for that nor do can the cylindrical extension and closure restore 

the original fuzzy relation, which situation can be illustrated as in Fig. 1. 
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Fig. 1. Example of information loss during projection by two distinct fuzzy relations 

The max-min composition of P(X, Y) and Q(Y, Z) binary fuzzy relations returns 
with R(X, Z) binary fuzzy relation, which is associative, its inverse is identical with 
the inverse relations’ reverse composition, but does not satisfy the conditions of 
commutativity. It is easy to see it can be generalized to any t-norm and t-conorm (or 
s-norms) pairs. Formally described: 

          z,yQ,y,xPminmaxz,xQPz,xR
Yy

  . (6) 

The relational connection operator is similar to the max-min composition; it 
produces an R(X, Y, Z) ternary fuzzy relation from the (relational) connection of P(X, 
Y) and Q(Y, Z) binary fuzzy relations and it also could be generalized to any t-norm 
and t-conorm pairs, formally: 

          z,yQ,y,xPminz,y,xQPz,y,xR  . (7) 

The fuzzy similarity measure of vectorvalued fuzzy (VVF) sets proposed and 
detailed in [18], [19] and [20] could be also applied for fuzzy relations. The similarity 
relation S(R, Q) of R and Q relations over X multi set is: 

 
QRRQ MS  , (8) 

where 

    QRQRQR  . (9) 

4 Fuzzy Methods in Recommender Systems 

In the last couple of years, several solutions were proposed for the application of 
fuzzy methods for recommendation problems. In the evaluation of recommender 
system methods hybrid filtering seemed to be the most effective approach to 
overcome cold-start problem and exploit behavioural patterns that couldn’t be 
explained solely metadata. Cornelis et al. applied fuzzy relations first in user and item 
similarities to improve the accuracy of conventional hybrid filtering methods [21]. 
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Later, additional various fuzzy neighbour methods with the combination of 
collaborative and content-based filtering were introduced in [22-25]. 

One of the key challenges of recommender systems is to overcome the lack of 
information for user profiling. To address uncertainty due to vagueness Perez worked 
out a method by applying fuzzy preference relation that is capable to provide better 
recommendations for users with a few events [26], Zenebe proposed a general 
framework for discovering, interpreting and visualizing user preferences with fuzzy 
set theories [27]. The improvement of user warm-up period were also studied by 
Porcel and Herrera-Viedma, in [28] they presented a fuzzy linguistic recommendation 
strategy to improve the acquisition of user profile. Nilashi discussed the usability of 
fuzzy techniques in multi-criteria recommendation problem to provide better profile 
models [29]. 

In order to reduce the uncertainty of preference modelling fuzzy theories were also 
used for clustering methods. Nadi proposed a fuzzy clustering technique that captures 
user’s behaviours on websites and provides more dynamic recommendations [30]. Liu 
and Gao studied the interpretation of user intentions with low amount of user actions, 
they proposed a recommendation solution by the application of fuzzy cluster analysis 
and cognitive maps [31]. Birtolo and Ronca published a study about two clustering 
collaborative filtering algorithms with the application of fuzzy logic. They measured a 
significant improvement in coverage of recommendations while the accuracy 
remained the same [32]. 

Several fuzzy-based recommendation methods were addressed to practical 
problems. Lu proposed a framework that helps students to find learning materials. For 
that he applied a multi-attribute evaluation method to capture the students’ 
preferences and a fuzzy matching method to find the most suitable materials [33]. For 
telecommunication domain Wu designed a solution that deals with tree-based 
structure of contents by using fuzzy similarity measure [34]. Castro-Schez introduced 
a prototype of recommender system for B2C e-commerce businesses. They proposed 
a method that capable to deal with vague search preferences and provide fuzzy rule-
based personalized recommendations of products [35]. Another application of fuzzy 
logic in e-commerce was proposed by Ramkumar, who introduced an automatic 
scoring for the reviews on products for spam detection [36]. Cornelis et al. addressed 
a method for the modelling of “one-and-only” items (the items that cannot be 
repetitive sold, e.g. houses). They applied fuzzy logic to extend existing collaborative 
filtering method and overcome the lack of collaboration [37]. García-Crespo applied 
fuzzy logic to provide personalized portfolio recommendations considering both 
financial attributes of investments and psychological aspects [38]. For the 
recommendation of candidates of political elections, Terán introduced a fuzzy 
clustering based method [39] and Dyczkowski proposed a voter preference modelling 
by intuitionistic fuzzy sets [40]. 
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5 Possible Applications of Fuzzy Relations in Recommender 
Systems 

The most trivial situation when a news site tries to categorize its viewers: some 
users tend to read latest news frequently no matter what kind of topic does it have, 
while older articles are read only according to his more specific preferences, which is 
suppressed by the data generated during reading the latest news. The main issues with 
profiling users and items were described in Section 2. In some situations there is no 
obvious way to define distinct clusters. The properties of fuzzy relations may help to 
overcome these problems. The fuzzy tolerance and equivalence relations have 
different mathematical properties, which makes it reasonable to investigate them in 
the context of recommendation, more specifically user and item preferences. An 
expression of the users/items and the clusters with fuzzy mathematics may have good 
results, since it is possible for a user (or item) to be part of various overlapping 
clusters. All the collected and non-collected (recommendation process related) data 
from the user are expressing his/her opinion and preferences over item or items. Both 
implicit, explicit feedback and meta data could be considered as sets of projections of 
a high-dimensional fuzzy relation; From this point of view it is obvious to assume that 
there hidden preferences of the user, which are not expressed in the collected data, but 
it does not require it for further processes. The composition and connection operators 
(or their generalized forms) defined over binary fuzzy relations (described in Section 
3) could be also used to determine or estimate connections between various spaces of 
feedbacks and meta data. 

Another possible application of fuzzy relations in user profiles are the following: 
consider a (global) fuzzy relation describing the users’ basic data (e.g. gender, age 
group multi set) and their item consumption data (e.g. views, tags multi set). Assume 
a new user without any stored data; after this user interacts the system starts to 
observe the user, which could be considered as an imprecise projection of his 
preference relation. With the global and observed (user) relations it could be possible 
to determine the best fitting user preference models for the new user only by 
investigating the similarities. The same principles could be used to speed up the 
“warm up” period and to overcome the cold-start problem; the user preferences are 
determined according to the relation between the fuzzy relations expressed by his/her 
consumption patterns through feedback (or meta data etc) and the fuzzy relation 
representing the space of known user profiles. 

Equivalence and/or similarity measure of fuzzy relations could be used to find the 
best fitting items with a specific (fuzzy relation) model in a global (fuzzy relation) 
space. It is easy to see that the computational requirements of the method could be 
decreased by limiting the calculation of similarity measure of the more specific fuzzy 
relation and the part of the global fuzzy relation, which is limited by the support of the 
more specific fuzzy relation. A simple illustration of fuzzy relations describing a user 
and global preferences can be seen in Fig. 2. 
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Fig. 2. Illustration of “specific” and “global” fuzzy relations describing items or users 

Misclassified or purely detailed items without or with only a limited number of 
feedbacks are difficult to recommend, and the accuracy of these hugely depends on 
the quality of meta data. Some of the methods use meta data enrichment to overcome 
this problem. The projections and cylindrical extensions or closures of fuzzy relations 
representing the user preferences, feedbacks or even statistical parameters could be 
used to reduce the computational requirements of the methods by decreasing the 
complexity of the models, but it is also possible to apply these methods to fill out 
missing data or preferences of a single item or user by typical values of other similar 
preference relations with the same concepts shown above. 

It is easy to see from the previous and this section that, there is a need for a 
comprehensive and detailed overview of fuzzy methods in recommender systems and 
it is reasonable to investigate these problems from mathematical aspects, but these are 
well over the limits of this work. 

6 Summary and Future Work 

In this paper the common problems of recommender systems were addressed from 
industrial point of view, basics of fuzzy methods and some of their applications were 
summarized. The mathematical backgrounds of these fuzzy relational concepts in 
recommender systems should be researched and developed in detail, implemented and 
compared with actual systems. In order to achieve the proposed object, the following 
main phases should be executed: (1) a representative detailed data set should be 
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collected (on both users and items), (2) detailed mathematical research of the 
application of fuzzy relational calculus (might include the development of new 
operators and methods in the field), (3) design and implementation of a 
recommendation system based on the output of previous phases, (4) comparison of 
actual and the developed systems and (5) integrating and testing selected methods in 
real life environment. 
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Abstract. This paper presents a system to detect abnormal movements
of a vehicle in a road. This technique compares the trajectory of the ve-
hicle with the information obtained from the lane marks of the road and
detects lane changes and vehicle skids. Then, a process to obtain one
single value representing the road’s shape (left bend, straight-away, right
bend) is done, to do this, each of the slopes of the two lines marking the
edges of traffic lanes are computed. Then a comparison process to detect
those frames where there is a logical correspondence between the vehi-
cle displacement and the road shape is performed. The proposed system
takes only as input information from the H264/AVC motion vectors and
the videos are captured from a moving vehicle. As output the time inter-
vals in which the vehicle displacement corresponds with a risky situation
are obtained.

Keywords: motion vectors, H264/AVC, lane mark segmentation, lin-
guistic comparison

1 Introduction

Intelligent Transport Systems use advanced technologies to improve vehicle’s
safety, for example, systems using computer vision techniques to segment the lane
marks in a road [6], perform monitoring [8], and alerting to deviations in the path
of the vehicle detected from information highway lines [1, 4]. There are also works
dealing with this problem using fuzzy logic, such as Wang et al. [7] and Obradovic
et al. [5]. One of the main features of the proposed method is its efficiency, that
is because it works with very little input information. This is possible by taking
as input data the motion vectors of the video compression standard H264/AVC.
This standard uses motion compensation based on macroblocks, pixel arrays,
etc. and exploits duplicate information in successive frames. Similar information
present in a frame and another, called reference frame, are not stored, only a
motion vector representing the displacement between macroblocks is used to
code the macroblock spatial differences. The motion vector field obtained by
H264/AVC can be considered as the sparse and imprecise approximation of the
optical flow.
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2 Giralt et al.

The rest of the paper is organized as follows. Section 2 presents the mecha-
nism that allows to represent by means of a fuzzy value the information obtained
from the segmentation of the lane marks of the road. Later, in Section 3 an al-
gorithm to compare the vehicle displacement with the road shape is detailed.
Finally, in Sections 4 and 5 the experimental results, the conclusions and the
future works are shown.

2 Road’s shape detection and representation

Algorithm 1 shows how to obtain a list containing the road’s shape changes all
along the video. The first step of this algorithm is based on a technique presented
in [2]. This method detects the lane marks of the road that are represented using
a set of statistical attributes. In this paper only is needed the information from
the left and right lane marks slopes named s(LL) and s(RL), respectively.

Algorithm 1 Computing the list L′

1: RS ← detection of line geometry using [2]
2: FRSList← fuzzification of each RS and computation of the list
3: L← Grouping consecutive elements of FRSList
4: L′ ← Grouping consecutive elements of L

Figure 1 shows the values of the left and right slopes of the first 1000 frames
of a sample video. The road turns left when the line slopes decrease, and the
road turns right when the slopes increase their values. If it is not possible to
detect a line in a concrete frame the method assumes the last value detected as
it happens in sharp turns, for example, in roundabouts [2].

Fig. 1. Slopes of the left and right lines of the lane

A single measure called s(m) is calculated to automatically obtain the road
shape combining the slopes s(LL) and s(RL) for every frame (Equation 1).

s(m)← s(LL) + s(RL) (1)
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Equation 2 assigns a description in natural language to the road’s shape in
every frame of the video. Two threshold values are needed (Umin and Umax).
These values are obtained empirically based on the minimal and maximal values
of s(m) in a frame sequence while the vehicle is moving in a straight line. This
sequence could be considered as a “training sequence”. Umin and Umax are −0.1
and 0.18 in Figure 2. The list containing the representative values of each frame
is called Road Shape (RS ).

text←




Left bend, If s(m) < Umin

Straight, If Umin ≤ s(m) ≤ Umax

Right bend, If s(m) > Umax
(2)

Fig. 2. Joint slopes and threshold values.

A linguistic variable [9] called Road Shape (RSV ) is used now. The reason to
translate the representation to the fuzzy domain is to manage the inherent noise
in the H264 motion vectors and the use of a mobile camera that also add noise
to the captured data (step 2 of Algorithm 1). This variable allows to add fuzzy
boundaries around Umin and Umax, and it is composed of three trapezoidal fuzzy
sets corresponding to the linguistic labels Left Bend (LB = {−0.5,−0.5, Umin−
k, Umin + k}), Right Bend (RB = {Umin − k, Umin + k, Umax − k, Umax + k})
and Straight (S = {Umax− k, Umax + k, 0.5, 0.5}) respectively. The parameter k
is determined empirically and it is based on the maximum and minimum values
of s(m) in each concrete video. RSV support is defined between [−0.5, 0.5] for
the videos used in the experimentation.

The fuzzification process consists of the generation of tuples named RSFuzzy
in every frame and their structure is shown in Equation 3.

RSFuzzy = (frame, µLC(s(m)), µS(s(m)), µRC(s(m))) (3)

Each one of these tuples are stored in a list ordered by the number of frame
(Equation 4).

FRSList← FRSList+ {RSFuzzy} (4)
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After that (step 3 of Algorithm 1), SetSize consecutive elements are pro-
cessed to obtain a single value that represents these elements. SetSize is empiri-
cally defined, and it must be proportional to the modulus of the motion vectors.
The more speed is reached the less the value of SetSize is, because more distance
is covered in less time and there can be more rapid changes in the shape of the
road. Now, a linguistic value is going to represent the road’s shape in SetSize
consecutive elements of FRSList. This value is named Label and it is obtained
as the linguistic variable with maximum membership once all the memberships
to the same variable are added for the SetSize frames. Then, in Equation 5 the
new linguistic representation for SetSize frames is shown.

MaxFCFuzzy = (frame ini, frame fin, Label) (5)

Finally, in the last step of the Algorithm 1, a new clustering process is done
and it obtains L′. This process is needed to joint consecutive elements in L with
the same value for the attribute Label. Equation 6 shows the structure of the
tuple containing the union of consecutive elements in L satisfying this condition.

MaxFCFuzzy = (frame ini, frame fin+ SetSize, Label) (6)

In brief, L′ is a list that contains the road’s shape through the time using
MaxFCFuzzy tuples to represent it. For example, Equation 7 details how a
video of 3420 frames is represented.

L′ = {(0, 139, S), (140 , 389 , RB)..., (3300 , 3419 , S)} (7)

3 Detection of risky situations

The detection of risky situations is done by means of a comparison process be-
tween the information contained in L′ and the results obtained in [3] about the
characterization of the vehicle displacement. This method is similar to the one
proposed in Section 2. It generates a tuple called Video Vehicle Displacement
(V V D) with a similar structure to L′, where the linguistic labels used to rep-
resent the displacement are Turning Left (TL), Straight (S) and Turning Right
(TR). Table 1 shows an example of the elements to be compared. The time inter-
vals are different for each one of the lists since they are obtained using different
processes. Then a mechanism to establish common time intervals that represent
the same interval times must be done. This process is described in Section 3.1,
after that, the comparison process is detailed (Section 3.2).

3.1 Obtaining the common intervals

Two ordered lists are obtained to identify the common intervals. These lists con-
tain the initial frame of the video and the attributes that define the final of each
temporal interval in each one of the lists. This attribute is named frame fin in

246



Analysing road risks 5

Table 1. L′ (left) and V V D (right) to compare.

f ini f fin Label f ini f fin Label

0 109 S 0 119 S

110 283 LB 120 270 TL

284 327 S 271 329 S

328 458 RB 330 470 TR

459 479 S 471 482 S

481 490 LB 483 509 TL

Equation 5. Equations 8 and 9 show the two lists from the information shown
in Table 1.

L1 ← {0, 109, 283, 327, 458, 479, 490} (8)

L2 ← {0, 119, 270, 329, 470, 482, 509} (9)

After that, the two lists are merged in order to obtain an ordered set named
Common Interval (CI). As mathematical sets, it does not allow duplicate ele-
ments. For example, from the lists of the Equations 8 and 9 the CI = {0, 109, 119,
270, 283, 327, 329, 458, 470, 479, 482, 490, 509} is obtained. Each two consecutive
values of CI is now a new interval. Both L′ and V V D are reorganized using
these intervals as it is shown in Table 2.

Table 2. New temporal values in L′ (left) and V V D (right).

f ini f fin Etiq. f ini f fin Etiq.

0 109 S 0 109 S

110 119 LB 110 119 S

120 270 LB 120 270 TL

271 283 LB 271 283 S

284 327 S 284 327 S

3.2 Comparison process

The elements of L′ and V V D are now compared in the same temporal interval in
order to detect the correspondences between the lane marks and the displacement
of the vehicle. More concretely, the attribute Label of L′ and V V D is used and
from Equation 10 risky situations can be obtained. For example, this equation
returns TRUE for the interval [0, 109] and FALSE for the interval [110, 119]
(Table 2).
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Comparison←





True, Label(L′) = LB and Label(V V D) = TL
True, Label(L′) = S and Label(V V D) = S
True, Label(L′) = RB and Label(V V D) = TR
False, In other case

(10)

The output of the comparison process is stored in a List of Differences (LD)
containing the tuples with the following structure: {frame ini, frame fin,
LabelL′ , LabelV V D}. These are the intervals with discrepancies between lane
marks and the displacement of the vehicle.

4 Experimental results

In the experimentation, three videos are used. One is a video recorded by the
authors whilst the two other videos were captured in a World Rally Car com-
petition. The two drivers were Sebastian Loeb and Peter Solberg. We consider
these two last videos very difficult for the aims of these tests since there are
sudden changes in the direction in the speed and there a lot of vegetation in the
ditch and in the road edge because the car drives along a rural minor road. This
videos are identified as Own, Loeb y Solberg, respectively.

4.1 Evaluation of the detection of the road’s shape

Table 3 exposes the obtained results for each one of the experiments in the
process of road’s shape recognition. The success rate is considerably lower for
Solberg and Loeb tests and failures mainly occur when the car begins a sharp
curve with a high speed. That is because the lane mark segmentation algorithm
loses the line followed and this error affects to the high level recognition process
here detailed.

Table 3. Road characterization.

Own Loeb Solberg

Hits 89.6% 67.7% 60.2%

Errors 10.4% 32.3% 38.8%

4.2 Evaluation of risky situations

Table 4 shows the comparison process for one of the experiments. When False
is obtained as result, a new element to the list of differences is added.

Then, hits of the system occurs when an element in the list of differences
corresponds with a risky situation in the video. The errors occur when the pro-
posed system does not detect risky situations as it is shown in Table 5 (from the
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Table 4. Comparison results in the experiment Own

f ini f fin VVD L’ Comparison

0 26 S S True

27 47 S RB False

48 113 S S True

114 244 TL LB True

245 283 TL S False

284 327 S S True

328 375 TR S False

376 397 TR RB True

398 451 TR S False

452 462 TR RB True

463 495 S S True

496 527 S LB False

528 571 S S True

572 593 S RB False

594 710 S S True

711 752 TR S False

753 796 TL S False

797 807 S S True

808 839 TR S False

840 909 S S True

910 942 S LB False

943 999 S S True

column 1 to 4) where risky situations are not present in the list of differences.
The percentage of the table refers to the number of frames. In Loeb experiment,
our system reaches a 97.7% of hits, then the 2.3% corresponds to risky situations
not detected.

Table 5. Risky detection in frames not present in LD

frames not present in LD frames present in LD

Own Loeb Solberg Own Loeb Solberg

Hits 100% 97.7% 76.3% Hits 32.5% 30.2% 29.9%

Errors 0% 2.3% 23.7% Errors 67.5% 69.8% 70.1%

Table 5 (from the column 5 to 8) details the results of the hits of our system.
A 29.9% detects the risky situations in the experiment Solberg (70.1% can be
considered errors). This percentage of errors are mainly due to the difficulty of
this video and the fact that the car continuously drives from one lane to the
another and other unexpected behaviours.
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5 Conclusions and future works

In this work we have presented a new technique to represent in a linguistic way
the road shape from a video sequence using as input data the H264/AVC mo-
tion vectors. The use of fuzzy logic allows to work with linguistic representations
and to process the information from several frames simultaneously. The use of
a very little amount of data allows to obtain a no time-consuming method. The
use of linguistic variables to represent the vehicle displacement and the road
shape makes interpretable the comparison process proposed. Despite the diffi-
culty of the selected videos for the experimentation, acceptable results have been
obtained in this first approach. As future works, it should be developed mecha-
nisms to analyse in more detail each one of the differences obtained as output of
the comparison process. Issues as their duration or the degree of differentiation
between vehicle displacements and road’s shape are factors that should be taken
into account for future developments.
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Abstract. We address the derivation of pseudometric based on fuzzy relations
for classification applications, by the use of genetic algorithms to learn the fuzzy
relations. We present an experiment for the classification of land use in an area of
the Brazilian Amazon region.
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1 Introduction

In a previous work [2], we proposed a a function called f+, based on fuzzy relations,
which are themselves derived from fuzzy partitions, for use in classification appli-
cations. This function is the complement in [0, 1] of a particular kind of fuzzy rela-
tion, called an Order Compatible Fuzzy Relation (OCFR�), defined using a total order
(Ω,�) [10]. An OCFR� itself is derived from a type of fuzzy partition (a collection of
fuzzy sets), called Convex Fuzzy Partitions (CFP�). The creation of OCFR� was moti-
vated by the need to ease the burden of creating suitable relations for use the particular
fuzzy case-based reasoning classification approach proposed in [8]. In [2], we proved
that f+ function is i) a pseudometric, when obtained from a specific type of CFP�,
called 2-Ruspini, and, in particular, a ii) metric, when this CFP� is moreover composed
solely of triangular fuzzy sets. The same happens in the case of multidimensional do-
mains, for function f+(µ) that aggregates the results obtained for f+ in each domain,
using the arithmetic means as aggregation operator µ.

Here we address the derivation of f+ for k-NN classification applications [11],
by the use of fuzzy genetic algorithms [1] to learn the fuzzy relations. We describe an
application in the classification of land cover and use in an area of the Brazilian Amazon
region.

2 Fuzzy relation based pseudometrics f+ and f+
(µ)

Let S : Ω2 → [0, 1] be a fuzzy binary relation and (Ω,�) be a total order. Formally, S
is an Order Compatible Fuzzy Relation with Respect to a Total Order (Ω,�) (OCFR�
or OCFR, for short), when it obeys the following properties [10]:
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– ∀x, y, z ∈ Ω, S(x, x) = 1 (reflexivity)
– ∀x, y, z ∈ Ω, S(x, y) = S(y, x) (symmetry)
– ∀x, y, z ∈ Ω, if x � y � z, then S(x, z) ≤ min(S(x, y), S(y, z)) (compatibility

with total order (Ω,�), or �-compatibility for short).

Let (Ω,�) be a total order and let A = {A1, ..., At} be fuzzy partition (a collection
of fuzzy sets) in Ω; here Ai denotes a fuzzy set but also its associated membership
function. Let the core and support of a fuzzy set A be defined as core(A) = {x ∈
Ω | A(x) = 1} and supp(A) = {x ∈ Ω | A(x) > 0}), respectively [3]. Formally, A
is a Convex Fuzzy Partition with Respect to a Total Order (Ω,�) (CFP� or CFP, for
short), if it obeys the following properties [10]:

1. ∀Ai ∈ A,∃x ∈ Ω,Ai(x) = 1 (normalization),
2. ∀x, y, z ∈ Ω, ∀Ai ∈ A, if x � y � z then
Ai(y) ≥ min(Ai(x), Ai(z)) (convexity),

3. ∀x ∈ Ω, ∃Ai ∈ A, Ai(x) > 0 (domain-covering),
4. ∀Ai, Aj ∈ A, if i 6= j then core(Ai) ∩ core(Aj) = ∅

(non-core-intersection).

Let A(Ω,�) denote the set of all CFPs that can be derived considering a total order
(Ω,�). CFP A ∈ A(Ω,�) is said to be a n-CFP if each element in Ω has non-null
membership to at most n fuzzy sets in A (n ≥ 1). In particular, a 2-CFP� A is called a
2-Ruspini partition, when it obeys additivity:

– ∀x ∈ Ω,∑iAi(x) = 1 (additivity)

In [10], the authors propose to generate OCFR� S+ : Ω2 → [0, 1] from a CFP� A
as

S+(x, y) =

{
0, if S∗(x, y) = 0
SL(x, y), otherwise

∀x, y ∈ Ω,S∗(x, y) = sup
i

min(Ai(x), Ai(y))

∀x, y ∈ Ω,SL(x, y) = inf
i

1− | Ai(x)−Ai(y) |

Note that SL is constructed based on the Lukasiewicz biresiduated operator [9].
In [2], the following function was proposed for tasks in which metrics and pseudo-

metrics are employed1:

∀x, y ∈ Ω, f+A(x, y) = 1− S+
A(x, y).

This formula can be written directly as:

∀x, y ∈ Ω, f+A(x, y) =

{
1, if ∀i,min(Ai(x), Ai(y)) = 0,
supi | Ai(x)−Ai(y) |, otherwise.

1 A metric satisfies non-negativity, symmetry and the triangle inequality and the identity of
indiscernibles properties. Pseudometrics obey the same properties, except for the identity of
indiscernibles, that is substituted by anti-reflexivity, a weaker property.
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When no confusion is possible, we denote f+A as simply f+.
Let O = Ω1 × ... × Ωm, where ∀i, (Ωi,�) is a total order. Let Ai be a 2-Ruspini

CFP� on Ωi and f+i be derived from Ai. Let f+(µ) : O → [0, 1] be the extension of
function f+ to multidimensional domains, defined as

f+(µ)(x, y) = µ(f+1 (x1, y1), ..., f+m(xm, ym)),

where µ : [0, 1]m → [0, 1] is the arithmetic mean, i.e., µ(a1, ..., am) =
∑

1≤i≤m ai

m .
In [2], it is proved that f+A is a pseudometric, in general, and a distance when all

fuzzy sets in A are triangular. Function f+(µ) trivially satisfies symmetry, anti-reflexitivity
and non-negativity. The same result holds for f+(µ). In the same work, function f+(µ) was
tested in a real-world application and yielded very good results when compared to both
the Euclidean and Mahalanobis distances.

3 Learning f+
(µ) using genetic algorithms for k-NN classification

We propose to use genetic algorithms to learn the fuzzy partitions necessary for function
f+(µ), which is also our fitness function. Here we consider classification by k-NN but
other methods could be used.

Let X = {x1, ...xm} be a set of variables, each of which defined in domain Ωi =
[li, ui], i ∈ {1,m}. We encode each chromosome as a sequence of m genes, each
of which related to a variable in X . The i-th gene is a sequence of parameters <
p1, ..., ps >, representing points in domain Ωi for a Ruspini partition. The sequence
is such that pi ≤ pi+1, 1 ≤ i ≤ s − 1. In a trapezoidal partition, the first (respec. last)
fuzzy term will have [li, p1] (respec. [ps, ui]) as core and [li, p2] (respec. [ps−1, ui]) as
support. In a triangular partition, the first (respec. last) fuzzy term will have li (respec.
ui) as core and [li, p1] (respec. [ps, ui]) as support.

Crossover consists in choosing a cutting place in two selected chromosomes c1 and
c2, and generating two new chromosomes c12 and c21. Let chromosome ci be described
as < pi,1, ..., pi,s > and let the cutting happen between the (k)-th and (k+1)-th genes.
The crossover between any two chromosomes c1 and c2 would be generate two new
chromosomes c12 and c21, respectively described as< p1,1, ..., p1,k, p2,k+1, , ..., p2,s >
and < p2,1, ..., p2,k, p1,k+1, , ..., p1,s >

If one of the generated chromosomes does not satisfy the condition on the pis,
we reorganize the parameters. For example, let us suppose we have two chromosomes
with 3 trapezoidal fuzzy sets Let c1 and c2 be described as < 10, 20, 30, 40 > and
< 31, 32, 33, 34 >, respectively, and that the cutting point is between p2 and p3. We
obtain a valid chromosome, c12 =< 10, 20, 33, 34 >, and an invalid one, c21 =<
31, 32, 30, 40 >. We then rearrange the invalid chromosome as c21 =< 30, 31, 32, 40 >.

In this work we use n-fold cross-validation. First of all, a data set T is partitioned
in n (approximately) equal parts (folds) Ti, such that T = ∪iTi. Then, for a given
fold i, training is performed using the elements of all folds, except for those in i, and
testing is performed the elements of fold i itself, making Traini =

⋃
Tj∈T,j 6=i Tj , and

Testi = Ti.
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4 Experiments

In the following, we briefly describe an experiment that illustrates the use of function
f+(µ) in a land use classification task in the Brazilian Amazon region. The area of interest
covers approximately 411 km2 and in the municipality of Belterra, state of Pará, in the
Brazilian Amazon region, partially contained in the National Forest of Tapajós. An
intense occupation process occurred in the region along the BR-163 highway (Cuiabá-
Santarém), with opening of roads to establish small farms, after deforestation of primary
forest areas [4]. As a result, there are mosaics of secondary vegetation in various stages,
with pastures and cultivated areas embedded in a forest matrix [5].

In this application, 14 attributes have been considered, derived from either radar or
optical satellite images, with 6 classes: forest, initial or intermediate regeneration, ad-
vanced regeneration or degraded forest, cultivated area, exposed soil, and pasture. The
samples consist of 138 ground information based hand-made polygons. The attribute
value for each polygon is the average of the values for the pixels composing it. The
experiments have been done using 6 folds (5 for training and 1 for testing).

To obtain the lower (respec. upper) bound for a variable domain, we took the small-
est (respec. largest) value from the elements in the fold, less (respec. plus) 20%. We have
tested two types of partition for each variable, a triangular and a trapezoidal one, each
of which with 3 fuzzy terms. In the triangular experiment, each partition is described
by < p1 >, where p1 is the core of the middle triangular fuzzy term. In the trapezoidal
experiment, each partition is described by < p1, p2, p3, p4 >, where [p2, p3] is the core
of the middle trapezoidal fuzzy term.

In our experiments, for each fold, the candidate population has 10 chromosomes.
Each chromosome has 3 genes, each of which describing a partition corresponding to
one of 3 variables used here. We have used an elitist genetic algorithm, keeping the
best 6 elements and combining the 3 first elements to generate the new candidates that
replace the worst 4 elements. We used a mutation rate of .2 and 400 generations.

We have used two kinds of population in the initial generation for each fold: “ran-
dom” and “selected”. In the selected first population for the fuzzy terms, the points are
obtained from a fixed set of percentage vectors. Considering all domains to be normal-
ized to [0,1], the selected population for the trapezoidal fuzzy sets corresponds to the set
of 10 quadruples < .20, .40, .60, .80 >, < .05, .28, .52, .76 >, < .23, .47, .71, .95 >,
< .23, .47, .52, .76 >,< .23, .28, .52, .76 >,< .23, .47, .71, .76 >,< .4, .55, .7, .85 >,
< .15, .55, .7, .85 >,< .15, .3, .7, .85 > and< .15, .3, .45, .85 >. The selected popula-
tion for the triangular fuzzy sets is obtained by taking the arithmetic means between p2
and p3 from the trapezoidal fuzzy terms. It corresponds to < .50 >, < .40 >, < .59 >,
< .49 >, < .40 >, < .59 >, < .62 >, < .62 >, < .50 > and < .37 >.

Figure 4 brings the accuracy results for this application, considering k-NN with 1 to
6 neighbours, using the several versions of function f+(µ): trapezoid-based and triangle-
based, considering selected and random initial populations (kNN_dFtz_s, kNN_dFtz_r,
kNN_dFtg_s, kNN_dFtg_r). For comparison, the figure also brings the Euclidean dis-
tance (kNN_dE).

We see from the figures that all methods had high accuracy and that the best average
results in the 6 folds were obtained with the use of f+µ for the triangular partitions. The
best individual results, considering all folds, were the same methods for 1, 2 and 3
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a)

b)

Fig. 1. Classification accuracy results for: a) k-NN average and b) k-NN maximum.

neighbours and the Euclidean distance for 2 and 3 neighbours. In particular, f+µ for the
triangular partitions with the initial population obtained at random yielded the same
results for the maximum as the Euclidean distance, except for 1 neighbour, when f+µ
fares better. All methods fare better with a small number of neighbours. In particular, the
best results for the triangular partitions, considering both the average and the maximum,
is obtained already with a single neighbour. The worst results have been obtained with
the trapezoidal partitions, for both types of initial populations.

5 Conclusions

In this work, we have proposed to use of genetic algorithms to learn fuzzy relations,
that are parameters for a pseudometric f+(µ). We describe a classification application of
land cover and use in an area of the Brazilian Amazon region, using k-NN. The results
have shown that the triangular partitions produced the best results.

Future work includes experimenting with other data sets. We also intend to verify
alternatives to reduce the computational cost, without a decrease in accuracy or ade-
quately reducing the training data Another alternative consists in learning the partition
for each variable separately; in order to calculate accuracy the distance relative to the
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other variables would be fixed (e.g. Euclidean) and aggregated with the distance ob-
tained from the partition.

This work is a first step towards using f+(µ) in [7], an extension to k-NN for image
classification, in which there is the possibility of using multiple spaces, that can be
originated from different data sources, having different ranges of values, as well as the
geographical space itself, allowing the use of topological associations.
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Abstract. Attribute reduction is an important step in order to decrease
the computational complexity to deriving information from databases.
In this paper, we extend the notions of reducts and bireducts introduced
in rough sets theory for attribute reduction purposes and let them work
with similarity relations defined on attributes values. Hence, the related
mathematical concepts will be introduced and the characterizations of
the new reducts and bireducts will be given in terms of the corresponding
generalizations of the discernibility function.

1 Introduction

Fuzzy Set Theory (FST) introduced by Zadeh [?] and Rough Set Theory (RST)
proposed by Pawlak [7], are complementary approaches to treating imperfect
knowledge: meanwhile the first one considers a certain degree of truth given,
in the second one the available information is incomplete. Specifically, in the
absence of exact information about a set, it is represented by a pair of sets,
which are the lower approximation and the upper approximation of the set.

Although in the original version proposed by Pawlak, the considered approx-
imations were classical sets, there have been introduced some new variants in
which the approximations could be fuzzy sets. A first definition, the rough fuzzy
sets, was given by Fariñas del Cerro and Prade in the eighties [3].

A very important part is to reduce the size of the database, without losing
information or elements of judgment. To this end various types of so called
reducts were presented and studied in the RST-related literature [1, 4, 6]

Bireducts extend classical RST-based notions of reducts in order to provide
more flexibility in operating with subsets of attributes and subsets of objects
that those attributes can efficiently describe [5, 9, 10]. The main objective of the
bireducts is to reduce the original system preventing the occurrence of incom-
patibilities and eliminating existing noise in the original data.

In this paper we study representations of bireducts both in the classical case
and in situations when the notion of equality is weakened towards similarity.

? Corresponding author.
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The organization of the paper is the following: Some basics concepts related
to the notion of similarity relation, the notions of δ-similar and δ-discordant are
called in Section 2. Section 3 presents the basic definitions with Boolean in the
new similarity enviroment. Conclusions and propects for future work are given
in Section 4.

2 Preliminaries

In this paper the classical theory of propositional logic will be considered in
order to interpret the expression of the discernibility function.

Definition 1. A WFF is said to be in disjunctive normal form (DNF) if it is
>, ⊥, a cube or a disjunction (possibly empty) of cubes.

A WFF is said to be in conjunctive normal form (CNF) if it is >, ⊥, a
clause or conjunction (possibly empty) of clauses.

The above normal forms may be reduced using absorption laws until none of
them can be further reduced, obtaining the reduced forms:

Definition 2. A DNF is said to be restricted (briefly, RDNF), if it satisfies
that any cube contains a literal or its complementary and it does not contain
repeated literals, and other cubes.

A CNF is said to be restricted (briefly, RCNF), if it satisfies that any clause
contains a literal or its complementary literal and it does not contain repeated
literals, and other clauses.

The previous definitions are critical to introducing and managing discerni-
bility function used in RST and will be generalized in this work to consider
similarity relations. Now, we will recall the basic definitions of RST, the notion
of similarity relation and its use on a decision system, which provides when two
objects are δ-similar and δ-discordant, with respect to a threshold δ.

Definition 3. An information system (U,A) is a tuple, where U = {x1, . . . , xn}
and A = {a1, . . . , am} are finite, non-empty sets of objects and attributes, re-
spectively. Each a in A corresponds to a mapping ā : U → Va, where Va is the
value set of a over U . For every subset B of A, the B-indiscernibility relation1

IB is defined as the equivalence relation

IB = {(xi, xj) ∈ U × U | for all a ∈ B, ā(xi) = ā(xj)}, (1)

where each class can be written as [x]B = {xi | (x, xi) ∈ IB}. IB produces a
partition on U denoted as U/IB = {[x]B | x ∈ U}.

In RST, data is represented as an information system. Given A ⊆ U , its
lower and upper approximations w.r.t. B are defined by

IB↓A = {x ∈ X | [x]B ⊆ A} (2)

IB↑A = {x ∈ X | [x]B ∩A 6= ∅} (3)

1 When B = {a}, i.e., B is a singleton, we will write Ia instead of I{a}.
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Definition 4. A decision system (U,A ∪ {d}) is a special kind of information
system, in which d 6∈ A is called the decision attribute, and its equivalence classes
[x]d are called decision classes.

A well-known approach to generate all reducts of a decision system is based
on its discernibility matrix and function [8]. The discernibility matrix of (U,
A ∪ {d}) is the n× n matrix O, defined by, for i and j in {1, ..., n},

Oij =

{
∅ if d(xi) = d(xj)
{a ∈ A | ā(xi) 6= ā(xj)} otherwise

(4)

The discernibility function of (U,A∪{d}) is the map f : {0, 1}m → {0, 1}, defined
by

f(a∗1, ..., a
∗
m) =

∧{∨
O∗ij | 1 ≤ i < j ≤ n and Oij 6= ∅

}
(5)

in which O∗ij = {a∗ | a ∈ Oij}. The Boolean variables a∗1, . . . , a
∗
m correspond to

the attributes from A. It can be shown that the prime implicants of f constitute
exactly all decision reducts of (U, A ∪ {d}).

We continue recalling the definition of similarity relationship, which extends
the notion of equivalence relation and therefore the concept of equality.

Definition 5. Given an arbitrary set V , the mapping E : V × V → [0, 1], is
called similarity relation if it is reflexive, symmetric and transitive.

In theory, we can define a similarity relation over the set of objects in an
arbitrary way. However, in practice it is indeed resonable to refer to values of
objects for available attributes.

There are several possibilities to define a similarity relation on the set of
objects U . One of the most popular ways is as follows:

EU (i, j) =
∧

a∈A
(Ea(a(i), a(j))) (6)

Definition 6. Given an information system A = (U,A) and a similarity rela-
tion family E = {Ea : Va × Va → [0, 1] | a ∈ A} we say that objects i, j ∈ U are
δ-similar if for all a ∈ A we have

δ ≤ Ea(a(i), a(j))

with δ ∈ [0, 1]. Otherwise, we say that objects i, j ∈ U are δ-discordant, that
is, if the following holds: {a ∈ A | Ea(a(i), a(j)) < δ} 6= ∅.

3 Generalization of reducts and bireducts by similarities
with Boolean decision attribute

In this section a threshold δ ∈ [0, 1] is fixed, from which we will use the notions
of δ-similar and δ-discordant pairs of objects to define the generalization of the

3259



discernibility function using similarity relations. Hence, an information system
A = (U,A) and a similarity relation family E = {Ea : Va × Va → [0, 1] | a ∈ A}
will also be fixed. Moreover, a linear ordering ≤ will also be fixed in U . Since the
specific definition of the ordering is not important, any one can be considered.
Given i, j ∈ U , we will say that i < j, if i ≤ j and they are not the same object.

First of all, the definitions of information reducts and bireducts are intro-
duced.

Definition 7. The set B ⊆ A is called δ-information reduct if and only if it is
an irreducible subset such that every pair i, j ∈ U , which is δ-discordant by A,
is also δ-discordant by B.

Definition 8. The pair (B,X), where B ⊆ A and X ⊆ U , is called δ-information
bireduct if and only if all pairs i, j of X are δ-discordant by B and the following
properties hold:

1. There is no C ( B such that all pairs i, j ∈ X are δ-discordant by C.
2. There is no X ( Y such that all pairs i, j ∈ Y are δ-discordant by B.

In this paper, the results will be focused on the general case of decision
reducts and bireducts. The cases of δ-information reducts and bireducts arise as
“particular cases” of them and similar results hold analogously. In this case we
will have to make a distinction based on decision attribute because we have a
definition whether the attribute is a Boolean decision or not. This section will
handle decision systems with a Boolean decision attribute. i.e., Boolean decision
systems.

Definition 9. Let A = (U,A ∪ {d}) be a Boolean decision system. The subset
B ⊆ A is called δ-decision reduct if and only if it is an irreducible subset such
that all pair i, j ∈ U is δ-discordant by B where d(i) 6= d(j).

Note that d(i) and d(j) are Boolean values. Next, the notion of decision bireduct
is given.

Definition 10. Let A = (U,A ∪ {d}) be a Boolean decision system. The pair
(B,X), where B ⊆ A and X ⊆ U , is called δ-decision bireduct if and only if
every pair i, j ∈ X is δ-discordant by B when d(i) 6= d(j) and the following
properties hold:

1. There is no C ( B such that all pair i, j ∈ X are δ-discordant by C, where
d(i) 6= d(j).

2. There is no X ( Y such that all pair i, j ∈ Y are δ-discordant by B, where
d(i) 6= d(j).

Now, we are going to introduce the discernibility function in this general
framework in order to obtain both δ-decision reducts and bireducts. Since for
δ-decision reducts only the attributes are needed we will call it unidimensional
δ-discernibility function (uni δ-d function) and for δ-decision bireducts, both
attributes and objects are considered and so, we will call it bidimensional δ-
discernibility function (bi δ-d function).
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Definition 11. Let A = (U,A ∪ {d}) be a decision system, the unidimensional
δ-discernibility function of A, is defined as the following conjunctive normal form
(CNF):

τuniA =
∧{∨

{a ∈ A | Ea(a(i), a(j)) < δ} | i, j ∈ U , d(i) 6= d(j)
}

where the elements of A are the propositional symbols of the language. Also, we
can denote it as:

τuniA =
∧

{i,j|Ed(d(i),d(j))<δ}


 ∨

{a|d(i) 6=d(j)}
a




Note that, although the condition i < j is not considered in the definition,
this can be considered without loss of generality, since any proper closure is
removed: If i = j, then Ea(a(i), a(j)) = 1 6< δ and so, this case does not arises
any clause. If j < i, then the same clause for i < j is provided and so, this will
be removed when the DNF will be computed. This remark can be applied to the
rest of discernibility functions introduced in this paper.

Therefore, the unidimensional δ-discernibility function of A can be written
as:

τuniA =
∧

{i,j|i<j,Ed(d(i),d(j))<δ}


 ∨

{a|d(i) 6=d(j)}
a




Next, the characterization of the δ-decision reducts is given.

Theorem 1. Given a Boolean decision system A = (U,A ∪ {d}). An arbitrary
set B, where B ⊆ A, is a δ-decision reduct of A if and only if the cube

∧
b∈B b

is a cube in the RDNF of τuniA .

The following definition is the natural extension of the discernibility function
expression to δ-decision bireducts.

Definition 12. Let A = (U,A∪{d}) be a decision system, the conjunctive nor-
mal form

τ biA =
∧
{i ∨ j

∨
{a ∈ A | Ea(a(i), a(j)) < δ} | i, j ∈ U, i < j, d(i) 6= d(j)}

where the elements of U and A are the propositional symbols of the language, is
called the bidimensional δ-discernibility function.

The following theorem characterize the δ-decision bireducts.

Theorem 2. Given a decision system A = (U,A ∪ {d}), an arbitrary pair
(B,X), B ⊆ A, X ⊆ U , is a δ-decision bireduct if and only if the cube

∧
b∈B b∧∧

i/∈X i is a cube in the RDNF of τ birA .
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4 Conclusion and future work

We have studied the reducts and bireducts in the classic environment of RST
and considering similarity relations. We have generalized discernibility function,
from which we could get the reducts and bireducts in these environments.

The inclusion of the similarity relations in theory provides a greater flexibility
in these environments, dramatically increasing the range of possible applications.
Moreover, we have also considered the δ-information reducts and bireducts in
FCA, providing a new reduction method based on RST, which very close to the
FCA framework.

As future work, we will extend the theory to obtain bireducts in fuzzy envi-
ronments, such as in fuzzy rough sets [1, 2]. Moreover, we will study in depth in
the relation between concept lattice reduction and rough set reduction consid-
ering similarity relations and in the general fuzzy case. Furthermore, we apply
the theory developed in both theories to practical cases.
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9. D. Ślȩzak and A. Janusz. Ensembles of bireducts: Towards robust classification
and simple representation. In T.-h. Kim, H. Adeli, D. Ślȩzak, F. Sandnes, X. Song,
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Abstract. Metabolic networks, formed by a series of metabolic pathways, are
made of intra-cellular and extracellular reactions that determine the biochemical
properties of a cell, and by a set of interactions that guide and regulate the activity
of these reactions. Cancer, for example, can sometimes appear in a cell as a result
of some pathology in a metabolic pathway. Most of these pathways are formed by
an intricate and complex network of chain reactions, and are often represented in
Molecular Interaction Maps (MIM), a graphical, human readable form of the cell
cycle checkpoint pathways. In this paper, we present a logic, called Molecular
Interaction Logic, which semantically characterizes MIMs.

1 Introduction

Metabolic networks, formed by series of metabolic pathways, are made of intra-cellular
and extracellular reactions that determine the biochemical properties of a cell, and by
a set of interactions that guide and regulate the activity of these reactions. These reac-
tions can be positive (production of a new protein) or negative (inhibition of a protein
in the cell). These reactions are at the center of a cell’s existence, and are modulated
by other proteins, which can either enable these reactions or, on the opposite, inhibit
them.

Medical and pharmaceutical researches [11, 8] showed that the break of the double
strand of DNA sometimes appear in a cell as a result of some pathology in a metabolic
pathway, and double strand break (dsb) is a major cause of cancer.

These pathways are used to investigate the molecular determinants of tumor response in
cancers. The molecular parameters include the cell cycle checkpoint, DNA repair and
apoptosis1 pathways [15, 11, 8, 12, 14]. When DNA damage occurs, cell cycle check-
points are activated and can rapidly kill the cell by apoptosis or arrest the cell cycle
progression to allow DNA repair before cellular reproduction or division. Two impor-
tant checkpoints that appear to function when parallel transduction cascades from DNA
damage to the cell cycle checkpoint effectors are the atm-chk2 and the atr-chk2 path-
ways [15].

Most of these pathways are formed by an intricate and complex network of chain reac-
tions, and are often represented in Molecular Interaction Maps (MIM), a human read-
able form of the cell cycle checkpoint pathways, such as the one in Figure 1(a), which
represents the atm-chk2 and atr-chk2 pathways cited above.

1 Apoptosis is the process of programmed cell death.
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(a) atm-chk2/atr-chk1 molecular interaction
map.

(b) atm− chk2 pathway

MIMs become increasingly larger and their density is constantly enriched with new
information (references, date, authors, etc.). Although essential for knowledge capital-
ization and formalization, MIMs are difficult to use because of the very large number of
elements involved as well as the inherent knowledge which, sometimes, is not formally
described in the map.

In this paper we present a method to transform a MIM into a set of logical formulas.
Subsets of Figure 1(a) will be used as examples, concentrating on the modelling of the
atm-chk2 pathway leading to apoptosis.

The rest of this paper is organized as follows: section 2 introduces the concept of Molec-
ular Interaction Maps and how they can be translated into a set of logical formulas. Sec-
tion 3 describes Molecular Interaction Logic, a logic which is capable of describing and
reasoning about general pathways and finally section 4 ends the paper with conclusions
and future work.

2 Molecular Interaction Maps

A Molecular Interaction Map [10] (MIM) is a diagram convention which represents the
interaction networks of multi-protein complexes, protein modifications and enzymes
that are substrates of other enzymes. Although interactions between elements of a MIM
can be complex, they can be represented using only three basic connectors: production
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( A ), activation (_) and inhibition (a). Figure 1(b) presents the atm-chk2 pathway,
an already pretty complex part of the large MIM of Figure 1(a), using only the afore-
mentioned connectors.

A production relation means that a new substance is created as a result of a reaction
on several primary components. For instance, the protein atm can be dimerized to be-
come the atm atm protein or phosphorylated at serine 1981 resulting in the produc-
tion of atm ps1981. These reactions can be triggered or blocked by other proteins or
conditions. For example, in Figure 1(b), atm ps1981 blocks the dimerization of atm
into atm atm, while the double strand break (dsb) of DNA triggers the production of
atm ps1981 by atm.

These interactions can be “stacked”: for example, protein p53 can be phosphorylated at
serine 15 to become p53 ps15 (see Figure 1(b)). This reaction is triggered by atm, but
the triggering itself has to be activated by dsb and can be blocked by atm atm. Thus,
the two main actions (production of a protein or inhibition of a protein) can be triggered
or blocked by a stack of preconditions.

2.1 Translation of MIMs into formulas

Our first goal is to translate any MIM into a set of logical expressions in order to perform
several automated reasoning tasks such as deduction or abduction. First, focusing on the
diagram of Figure 1(c) (which corresponds to a sub-diagram of Figure 1(b)) will help
getting an intuitive idea of how translation is performed.

p53

apoptosis

p53 ps20p53 ps15

p53, mdm2 p53 mdm2

p53 ps20p53 ps15

p53, mdm2 p53 mdm2

(c) Apoptosis by p53 ps20 and p53 ps15 mediation.

a1,a2,...,an b

e1,e2,...,en f1,f2,...,fn

c1,c2,...,cn

h1,h2,...,hn i1,i2,...,in

g1,g2,...,gn

(d) The general form of a basic produc-
tion.

Here apoptosis arises when protein p53 is phosphorylated at serine 20 or 15 (instances
p53 ps20 and p53 ps20 respectively). However, apoptosis would not happen if the
dimer p53 mdm2 is present. Thus the context would be if p53 and either p53 ps20
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or p53 ps15 are present and p53 mdm2 is absent then apoptosis is produced (this
example should of course be completed with the rules for producing the rest of objects
in the diagram).

The general form of production relations is displayed in Figure 1(d).

Each arrow can be either an activation or an inhibition of the relation it applies to, and
these activations/inhibitions can be stacked on any number of levels. The above ex-
amples give the idea behind the translation: it is a recursive process starting from the
production relation and climbing up the tree. In order to formally describe the transla-
tion, the concept of pathway context is now defined:

Definition 1 (Pathway context). Given a set of entities, a pathway context is formed
by expressions defined by the following grammar:

α ::= 〈αP _, αQ a〉|〈P _, Q a〉,

where P and Q are sets (possibly empty) of propositional variables representing the
conditions of activation (_) or inhibition (a) of the reaction. The first part of the pair
is the activation context, the second part is the inhibition context. One, or both sets can
be empty. �

For example, the p53 A apoptosis reaction of Figure 1(c) would lead to the following
two pathway contexts:

〈p53 ps20 _, p53 mdm2 a〉 (1)
〈p53 ps15 _, p53 mdm2 a〉 (2)

Definition 2 (Activation and inhibition expressions). Given a pathway context α =
〈α′P _, β′Q a〉, the activation and the inhibition expressions associated with the
context α (denoted by A(α) and I(α)) are defined recursively as:

A(α) =
∧

p∈P
p∧A(α′)∧(

∨

q∈Q
¬q∨I(β′)) I(α) =

∨

p∈P
¬p∨I(α′)∨(

∧

q∈Q
q∧A(β′))

The above expressions define the general forms of A(α) and I(α). If one part of the
context α is empty, then the corresponding part is of course absent in A(α) and I(α).
�

Following such definition, formulas associated with (1) are:

A((1)) = p53 ps20 ∧ ¬p53 mdm2 I((1)) = ¬p53 ps20 ∨ p53 mdm2
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Definition 3 (Causal pathway formulas). A causal pathway formula is defined by the
following grammar:

F ::= [α](p1 ∧ · · · ∧ pn → Pr q) | [α](p1 ∧ · · · ∧ pn → In q) | F ∧ F,

where α is a pathway context, p1, · · · , pn, q are propositional variables while Pr and
In are modal concepts that qualify the process of activation or inhibition of proteins. �

Applied to the example of Figure 1(c), the causal pathway formula associated with the
production rule p53 A apoptosis is

[(1)](p53→ Pr apoptosis) ∧ [(2)](p53→ Pr apoptosis) . (3)

Observation 1 Each MIM can now be represented in terms of a causal pathway for-
mula. �

3 Molecular Interaction Logic

In this section the semantics of the Molecular Interaction Logic (MIL) is formally in-
troduced. This work extends a previous one [5, 4] where the MIMs were formalized
via first order logic with equality, in which the pathway contexts were limited to one
level of depth. From now on, p means protein p is present and ¬p means protein p is
absent.

Definition 4 (MIL interpretation). A MIL interpretation consists of a pair (V1, V2) of
classical evaluations i.e. V : P → {True, False} where P is the set of propositional
variables. �

The intuitive meaning behind these two evaluations correspond for V1 to the protein
present or absent, and for V2 to the state of the protein resulting from the chemical
reactions in the cell2.

Definition 5 (Satisfaction relation). Given a MIL interpretation (V1, V2) and a for-
mula α, the satisfaction relation is defined as:

1) (V1, V2) � p iff V1(p) = True for p ∈ P
2) ∧, ∨ and→ are satisfied as in classical logic.

3) (V1, V2) � Pr p iff V1(p) = V2(p) = True

4) (V1, V2) � In p iff V1(p) = V2(p) = False

2 If the semantics of the modal logic S5 is restricted to have at most two worlds then a strong
normal form in which conjunctions and disjunctions are not in the scope of a modal operator
can be found for this new logic [1]: the pathway causal formulas of MIL verify this condition.
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5) (V1, V2) � [α]F iff (V1, V2) 2 A(α) or (V1, V2) � F
�

As usual, a formula F is satisfiable if there is a model (V1, V2) such that (V1, V2) �
F .

Observation 2 MIL can be characterized by the axioms of classical logic, plus the
axioms:

1. [α]F ↔ (A(α)→ F )

2. Pr p→ p, if p is produced then p is present

3. In p→ ¬p, if p is inhibited then p is absent

�
As a result of MIL semantics, the causal pathway formula (3) is logically equivalent to
the conjunction of the following implications:

(p53 ∧ p53 20 ∧ ¬p53 mdm2)→ Pr apoptosis (4)
(p53 ∧ p53 20 ∧ ¬p53 mdm2)→ Pr apoptosis (5)

Observation 3 Any MIM can be transformed into a causal pathway formula, and every
causal pathway formula is equivalent to a boolean composition of:

– propositional variables or their negation

– propositional variables qualified by Pr or In or their negation

�
Axioms 2) and 3) of observation 2 have as consequence:

Observation 4 Given a MIM formula F , adding Pr p → p and In p → ¬p for each
propositional variable p in F , enables us to embbed MIL into classical logic. �
The notions of completion and production axioms, which are both important and im-
plicit in MIMs, are presented first.

4 Conclusions and future work

We have presented a method to automatically translate MIMs into logical formulas, for-
malism that allows performing several kinds of reasoning such as deduction (in order to
find inconsistencies in a representation) and abduction (which allows answering queries
asked on MIMs). As a future work we want, on one hand, to enrich the language of MIL,
with concepts like ”aboutness” which are able to qualify, for example, proteins, allow-
ing us to isolate the subgraph of a given MIM, regarding the qualified proteins. On the
other hand, such enrichment of the language could include the introduction of temporal
operators while to incorporate a temporal aspect to MIMs
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